

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Computability

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa40896

Paper:

Beckmann, A., Buss, S., Friedman, S., Müller, M. & Thapen, N. (2018). Feasible set functions have small circuits.

Computability, 1-32.

http://dx.doi.org/10.3233/COM-180096

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa40896
http://dx.doi.org/10.3233/COM-180096
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Feasible set functions have small circuits

Arnold Beckmann
Department of Computer Science

Swansea University

a.beckmann@swansea.ac.uk

Sam Buss∗

Department of Mathematics

University of California, San Diego

sbuss@ucsd.edu

Sy-David Friedman†

Kurt Gödel Research Center

University of Vienna

sdf@logic.univie.ac.at

Moritz Müller‡

Kurt Gödel Research Center

University of Vienna

moritz.mueller@univie.ac.at

Neil Thapen§

Institute of Mathematics

Czech Academy of Sciences

thapen@math.cas.cz

June 20, 2018

Abstract

The Cobham Recursive Set Functions (CRSF) provide an analogue
of polynomial time computation which applies to arbitrary sets. We
give three new equivalent characterizations of CRSF. The first is al-
gebraic, using subset-bounded recursion and a form of Mostowski col-
lapse. The second is our main result: the CRSF functions are shown
to be precisely the functions computed by a class of uniform, infini-
tary, Boolean circuits. The third is in terms of a simple extension of
the rudimentary functions by transitive closure and subset-bounded
recursion.

∗Supported in part by NSF grants DMS-1101228 and CCR-1213151, by the Simons
Foundation, award 306202, and by the Skolkovo Institute for Science and Technology.
†Supported by the Austrian Science Fund (FWF) under project number P24654.
‡Supported by the Austrian Science Fund (FWF) under project number P28699.
§Partially supported by the European Research Council under the European Union’s

Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement 339691. The
Institute of Mathematics of the Czech Academy of Sciences is supported by RVO:67985840.

1

1 Introduction

Computability over the natural numbers has over the years been success-
fully extended to robust notions of computability on ordinals, on objects of
finite type and on sets in general (see for example Sacks’ book [10]). Our
goal is to develop an analogous, robust extension of computational complex-
ity to arbitrary sets. This is the third of a series of papers exploring the
model for polynomial-time computation on arbitrary sets given by the Cob-
ham recursive set functions (CRSF) [4, 5]. A broader and promising future
programme is to carry this out for other notions from complexity theory.
This paper is largely self-contained. In particular, as it relies on a different
definition of CRSF, it can be read independently of [4] and [5].

The class CRSF was introduced in [4] to capture the notion of feasible,
polynomial time computation on arbitrary sets. In particular, it coincides
with the usual polynomial time functions on finite binary strings, if strings
in {0, 1}k are identified with the corresponding set-theoretic functions in k2.

The definition of CRSF in [4] is as a function algebra, based on a general-
ization of Cobham recursion on notation to arbitrary sets. A proof-theoretic
characterization of CRSF, in terms of a version of Kripke-Platek set theory,
is given in [5]. Furthermore, as shown in [4], the CRSF functions are closely
connected to the Predicatively Computable Set Functions (PCSF) defined by
Arai [2], which give a different characterization of polynomial time functions
on sets. The PCSF functions are defined using safe recursion on notation,
which was earlier used in [3] to define the larger class of Safe Recursive
Set Functions (SRSF). A related notion of polynomial time on certain infi-
nite sets was defined by Schindler [12]; see [3] for connections between this
and SRSF. Sazonov [11] introduced a class of polynomial time functions on
hereditarily finite sets, which we compare to CRSF in [4].

In [4] we take ∈-recursion as the basic model for computation on sets.
The innovation is that the power of ∈-recursion is restricted by allowing new
functions to be introduced only if their output is no more complex than the
output of a function already known to be in CRSF, in the style of Cobham’s
definition of polynomial time [6]. Here a set a is no more complex than a
set b if a is embeddable in b in a certain sense (which we describe later). To
allow a limited, “polynomial” increase in complexity [4] adapts the smash
function # of bounded arithmetic into an operation on sets, namely a kind
of cartesian product on Mostowski graphs, and includes this as one of the
initial functions.

We introduce here three alternative characterizations of CRSF. These all
take ∈-recursion as fundamental, but they restrict its strength in different

2

ways, and one of them does not use the smash function. That they all give
rise to the same class of functions gives more evidence that CRSF is natural.

The first characterization is similar to [4]. The class CRSF⊆ is formed
by taking some basic initial functions, including the smash function, and
closing under composition and subset-bounded recursion: if g and h are in
the class, then so is the function f defined by the recursion

f(~a, b) = g(~a, b, {f(~a, c) : c ∈ b}) ∩ h(~a, b).

We call this “subset-bounded” because it allows defining a function f by
recursion only if we have in hand a function h such that f(~a, b) ⊆ h(~a, b).
The main difference between this and the definition in [4] is the use of this
simpler kind of recursion instead of the rather complicated “embedding-
bounded” recursion of [4], of which it is a special case. The disadvantage
is that CRSF⊆ functions are limited in what they can output, because any
output value must look more or less like a subset of (some basic function of)
the input.

To deal with this we use a system for coding sets as subsets. A standard
way to represent a finite graph in computer science is as a subset of n × n
(coded as a binary string of length n2) giving the edge relation, where n is a
size parameter. Similarly we can take a set, represent a copy of its Mostowski
graph as a subset E of a× a, where a is some suitable set, and then recover
the original set from E using Mostowski collapse. It turns out that we still
get a robust system of coding if we restrict the kinds of subset E that can
appear (by only allowing edges consistent with the ordering induced by ∈),
and that then we do not need the full strength of Mostowski collapse but
can make do with a limited, “feasible” version of it.

We define CRSF+
⊆ by adding this limited Mostowski collapse function to

CRSF⊆. We show that CRSF+
⊆ and the original CRSF are the same, and

in particular that for every CRSF function f(~x) there is a CRSF⊆ function
which computes a code for f(~x). It follows that we can compute f(~x) in
CRSF+

⊆ with only a single use of Mostowski collapse, and also that CRSF⊆
and CRSF contain the same relations, that is, the same 0/1 valued functions.

Our second characterization takes a very different approach, by describ-
ing a Boolean circuit model of computation on sets. We define (possibly
infinite) circuits, which act on Boolean (0/1) values and have the usual con-
junction, disjunction and negation gates. To allow these to input and output
sets, we use the method of coding outlined above. For example, if we want
to take as input sets which can be coded as a subset E of a× a, we include
an input node for each member u of a×a, and assign it the value 1 if u ∈ E

3

and 0 otherwise – and as is usual in circuit complexity, we will need a differ-
ent circuit for each size parameter a. We show that CRSF can be precisely
characterized as the functions which can be computed by strongly uniform
families of small Boolean circuits, where “small” is defined in terms of the
smash function. This is our main result, and shows that a basic property of
polynomial time functions carries across smoothly to arbitrary sets.

There are several advantages to the Boolean circuit characterization.
First, it is quite different from the earlier characterizations, thus providing
more evidence of the robustness of CRSF. Second, it makes clear that CRSF
is, in part, a model of parallel computation. This fact is obscured in the
earlier development in [4], as that work focused on the equivalence with
polynomial time computation. Third, it allows tools from the usual theory
of Boolean circuit complexity to be applied to CRSF. As an example, using
the Hastad switching lemma about the inexpressibility of parity in AC0 [8],
we can show a version of P6=NP for CSRF. We hasten to mention that this
does not say anything about whether the usual classes of P and NP are
distinct.

Our third characterization is again as a function algebra, this time de-
fined by extending the rudimentary functions in an elementary way. We
take the class RS to be the rudimentary functions plus the transitive closure
function, all closed under subset-bounded recursion. We do not add the
smash function, and it is easy to see that smash is not in RS, which hence
is different from CRSF. However we adapt our system of coding to RS and
show that CRSF functions can be defined in RS via their codes, and thus
that the classes are essentially the same except for issues of decoding. The
key is to show that ∈-recursion in the presence of smash can be simulated
by lexicographic ∈-recursion without smash.

There are several potential routes for future work. This paper, together
with related work [3, 2, 4, 12], shows that we have established a robust
understanding of polynomial time in set theory. Obvious next steps are
to find set theoretic analogues for other time, space or circuit complexity
classes which are well-known and well-studied in the context of finite binary
strings.

The outline is as follows. Section 2 discusses preliminary topics, and
introduces our version of the Mostowski collapse and smash functions. Sec-
tion 3 introduces subset-bounded recursion, defines our version of CRSF,
and proves some basic properties of these definitions. Section 4 introduces a
simple model of infinite-time Turing machine computation and shows that on
finite and infinite binary strings, CRSF functions are the same as those com-

4

puted by corresponding notions of polynomial time Turing machines. Sec-
tion 5 introduces some technical material, in particular bisimilarity, which
we will use to detect when two encodings of Mostowski graphs represent
the same set. Section 6 defines infinite Boolean circuits, and also the no-
tion of ∆#

0 -uniform families of Boolean circuits. Section 7 proves a series of

strong technical results about the power of ∆#
0 -uniform circuits. Section 8

completes the proof that the CRSF functions are precisely the functions
computable with ∆#

0 -uniform circuits. It also gives a P6=NP style result for
CRSF functions acting on hereditarily finite (HF) sets. Section 9 proves
the equivalence of our version of CRSF and CRSF as defined in [4]. Sec-
tion 10 shows that adding transitive closure and subset-bounded recursion
to Jensen’s rudimentary functions gives another characterization of CRSF.

2 Preliminaries

2.1 Notational conventions

The partial ordering induced on sets by ∈ will play a fundamental role
for us, analogous to the ordering on natural numbers. We therefore use the
notation < for the transitive closure of the ∈ relation, and the notation ≤ for
the reflexive transitive closure. Writing tc(b) for the transitive closure of b,
this means that a < b and a ≤ b are equivalent to a ∈ tc(b) and a ∈ tc({b}),
respectively. To further strengthen the analogy to the interval notation and
because it will be convenient for the generalized notion of “binary string”
defined below, we write [a] for tc({a}) (this was denoted tc+(a) in [4]). This
notation is meant to suggest the “interval” [0, a] = {x : ∅ ≤ x ≤ a}.

We often code one set inside another set in a way that generalizes the
usual notion of binary strings. We will stick as much as possible to the
following convention. We treat some sets as “raw materials”, inside whose
Mostowski graphs we will construct other objects. We write these “raw
material” sets using small letters a, b, . . . ; they are analogous to unary strings
in complexity theory. We use capital letters E,F, . . . or U, V, . . . for objects
we construct as subsets of the Mostowski graphs of sets of the first kind; these
are analogous to binary strings. For ordinary binary strings, the analogy is
precise: an ordinary unary string of length n is identified with the von
Neumann integer a = n, and an ordinary binary string of length n is then
the subset U of a having as members the positions where a bit 1 appears in
the string.

In a directed graph, if there is an edge from a node u to a node v we
say that u is a predecessor of v. If there is a path (possibly of length 0)

5

from u to v we say that u is an ancestor of v. We will usually be dealing
with acyclic (in fact well-founded) directed graphs, and when we describe
directed graphs we think of the edges as pointing upwards.

We define the ordered pair as 〈a, b〉 = {{a}, {a, b}} and extend this in
the usual way to ordered k-tuples, with 〈a, b, c〉 = 〈a, 〈b, c〉〉 etc. and 〈~a〉 = a
if ~a is a 1-tuple. We will write [a]k for the k-th cartesian power of [a], since
we will need to refer to this often. But we do not use this notation for sets
not written in the form [a] to avoid confusion with ordinal exponentiation.

We identify the natural numbers with the finite von Neumann ordinals
∅, {∅}, . . . For the sake of consistency we will always write 0 instead of ∅.

2.2 Embedded Mostowski collapse

Recall that a directed graph with nodes U and edges E is well-founded
if, for every non-empty subset S of U , there is a node y in S with no
predecessors in S. It is extensional if no two distinct nodes have the same
set of predecessors. We say that it is accessible pointed with sink a if there
is a path from every node to a.1

The Mostowski graph of a set a is the directed graph G(a) := 〈[a], E〉
with nodes [a] and with edges E = {〈x, y〉 ∈ [a]2 : x ∈ y}. Clearly G(a)
is well-founded, extensional and accessible pointed, with sink a. By well-
foundedness and extensionality it also has exactly one source node, the
empty set. On the other hand if G is any well-founded, extensional, ac-
cessible pointed graph then there is a unique set a, the Mostowski collapse
of G, such that G is isomorphic to G(a). We denote this set a by M(G).

Definition 2.1 A diagram is a pair 〈a,E〉 of sets such that 〈x, y〉 ∈ E only
if x < y.

The diagram 〈a,E〉 represents the graph with nodes [a] and edges E∩[a]2.
We think of 〈a,E〉 as a graph “embedded” in the Mostowski graph G(a) of a,
with edges that are forced to respect the ordering on G(a). An example of
a diagram is the pair 〈a,∈�[a]2〉, representing G(a) itself.

A diagram is automatically well-founded, by the condition on E. In
general it is not accessible pointed or extensional; for example any nodes
in [a] outside the range of E will have the same, empty set of predecessors.
However, if we restrict the graph to the set of nodes that are E-ancestors
of a, then it is accessible pointed, with sink a. Furthermore, we can make

1Aczel [1] defines an accessible pointed graph as one with a distinguished node from
which every other node is reachable. Note that our paths run in the opposite direction.

6

it extensional by recursively collapsing together nodes with the same set
of predecessors. We can then take the Mostowski collapse of the resulting
graph. This procedure, which we call embedded Mostowski collapse, has a
simple recursive definition:

Definition 2.2 The embedded Mostowski collapse function M(a,E) is de-
fined by

M(a,E) = {M(b, E) : b < a ∧ 〈b, a〉 ∈ E}.

Notice that this is definable by ∈-recursion. We will almost always use
Mostowski collapse in this form, so will often omit the word “embedded”.

We use rank(x) to denote the von Neumann rank of the set x and |x| to
denote its cardinality.

Lemma 2.3 |[M(a,E)]| ≤ |[a]| and rank(M(a,E)) ≤ rank(a).

Definition 2.4 We say b is embeddable in a if b = M(a,E) for some E.

We interpret the embeddability of b in a as meaning that b is no more
complex than a, in the sense that, for example, recursion over b is no more
powerful than recursion over a. Lemma 9.4 shows that our notion of em-
beddability is the same as the one in [4].

2.3 The smash function

We repeat some definitions from [4].

Definition 2.5 The set composition function a � b is defined as follows.
Given sets a and b, construct a graph H by drawing the graph G(a) above
the graph G(b) and then identifying the source of G(a) with the sink of G(b).
Then a� b =M(H).

An equivalent recursive definition for set composition is:

a� b =

{
b if a = 0
{x� b : x ∈ a} if a 6= 0.

Definition 2.6 The set smash function a#b is defined as follows. Given
sets a and b, construct a graph H by drawing a disjoint copy Gx of G(b) for
every point x ∈ G(a), and then adding an edge from the sink of Gx to the
source of Gy for every edge 〈x, y〉 of G(a). Then a#b =M(H).

7

An equivalent recursive definition for set smash is:

a#b = b� {x#b : x ∈ a}.

The smash function is a kind of cartesian product on Mostowski graphs.
We introduce a corresponding “pairing function” σa,b(x, y), which we think
of as taking nodes x ∈ G(a) and y ∈ G(b) and outputting the node corre-
sponding to y in the x-th copy Gx of G(b) in H. Note that although we
write a as a subscript in σa,b we do not actually use a in the definition.

Definition 2.7 We define σa,b(x, y) = y � {z#b : z ∈ x}.

Lemma 2.8 The function 〈x, y〉 7→ σa,b(x, y) is an order isomorphism be-
tween [a]× [b], ordered lexicographically, and [a#b].

Definition 2.9 We let π1,a,b : [a#b] → [a] and π2,a,b : [a#b] → [b] be
projection functions inverting σa,b, so that σa,b(π1,a,b(z), π2,a,b(z)) = z for
z ∈ [a#b].

Lemma 2.10 For sets a and b,

1. rank(a� b) = rank(b) + rank(a)

2. |tc(a� b)| = |tc(a)|+ |tc(b)|
3. rank(a#b) + 1 = (rank(b) + 1)(rank(a) + 1)

4. |tc(a#b)|+1 = (|tc(b)|+1)(|tc(a)|+1), equivalently, |[a#b]| = |[a]|·|[b]|.

Definition 2.11 A smash-term is a term built from variables, the con-
stant 0 and the functions pairing, cartesian product, transitive closure, �
and #.

Smash-terms will play the role usually played by polynomials in com-
putational complexity, providing bounds for various complexity measures.
Notice that the rank, and respectively the size of the transitive closure, of a
smash-term is at most polynomially larger than those of its arguments. (The
corresponding definition of #-term in [4] is stricter, only allowing variables,
the constant 1, � and #.)

8

3 Subset-bounded recursion and CRSF

This section is modelled on the similar development of CRSF in [4].

Definition 3.1 Let g(~a, b, x) and h(~a, b) be functions from sets to sets. The
function f(~a, b) is obtained from g(~a, b, x) by subset-bounded recursion with
bound h(~a, b) if

f(~a, b) = g(~a, b, {f(~a, c) : c ∈ b}) ∩ h(~a, b).

Definition 3.2 We take as initial functions

1. the constant 0

2. projection: a1, . . . , an 7→ aj for 1 ≤ j ≤ n
3. pairing: a, b 7→ {a, b}
4. union: a 7→

⋃
a

5. conditional: cond∈(a, b, c, d) =

{
a if c ∈ d
b otherwise

6. transitive closure: a 7→ tc(a)

7. cartesian product: a, b 7→ a× b
8. set composition: a, b 7→ a� b
9. set smash: a, b 7→ a#b

10. embedded Mostowski collapse: a,E 7→M(a,E).

The above initial functions are roughly the same as the primitive symbols
in the definition of Cobham recursive set functions given in [5], but with the
addition of the embedded Mostowski collapse function.

Definition 3.3 CRSF⊆ is defined as the closure of initial functions 1 to 9
under composition and subset-bounded recursion. CRSF+

⊆ is defined as the
closure of all of the initial functions above, including embedded Mostowski
collapse, under composition and subset-bounded recursion.

Definition 3.4 A CRSF⊆ relation is a relation ϕ(~a) given by an expression
of the form g(~a) 6= 0 where g is a CRSF⊆ function. The CRSF+

⊆ relations
are defined similarly.

Lemma 3.5 We derive some basic properties of CRSF⊆. The same prop-
erties also hold with CRSF+

⊆ in place of CRSF⊆.

9

1. CRSF⊆ contains the functions {a}, a ∪ b and

cond=(a, b, c, d) =

{
a if c = d
b otherwise.

2. The CRSF⊆ relations are closed under Boolean operations.

3. CRSF⊆ is closed under separation. That is, if ϕ(~a, c) is a CRSF⊆
relation then the following function is in CRSF⊆:

f(~a, b) = {c ∈ b : ϕ(~a, c)}.

4. The CRSF⊆ relations are closed under ∆0 quantification, in which
quantifiers range over members of a given set.

5. CRSF⊆ contains the functions
⋂
a, a \ b and a ∩ b. By convention⋂

0 = 0.

6. CRSF⊆ contains the usual pairing and projection functions for k-
tuples, for k ∈ N.

7. CRSF⊆ contains σa,b and the projection functions π1,a,b and π2,a,b.

Proof

1. We use {a} = {a, a} and a ∪ b =
⋃
{a, b}. We define cond= as

cond∈(a, b, c, {d}).
2. We define ¬(g(~a) 6= 0) and (f(~a) 6= 0) ∨ (g(~b) 6= 0) respectively by

cond=(1, 0, g(~a), 0) 6= 0 and f(~a) ∪ g(~b) 6= 0.

3. Using cond∈, cond= and Boolean operations we can define functions
by cases. Define k(~a, b, c) by recursion on c as

k(~a, b, c) =


{c} if c ∈ b and ϕ(~a, c)⋃
{k(~a, b, d) : d ∈ c} if c = b

0 otherwise.

Then k(~a, b, c) ⊆ b always, so k is definable by subset-bounded recur-
sion with bound b. We put f(~a, b) = k(~a, b, b).

4. We can define the relation ∃c∈b ϕ(~a, c) by

{c ∈ b : ϕ(~a, c)} 6= 0

where the set on the left is given by separation.

10

5. We take
⋂
a = {x ∈

⋃
a : ∀b∈a (x ∈ b)}, using separation. The other

two are trivial.

6. Trivial.

7. We have σa,b(x, y) = y � {z#b : z ∈ x}, where the set {z#b : z ∈ x}
can be obtained by separation, since it is a subset of tc([x#b]). For
z ∈ [a#b] we can define, for example, the projection function π1,a,b by

π1,a,b(z) =
⋃
{x ∈ [a] : ∃y∈[b]σa,b(x, y) = z}

since exactly one x satisfies the condition on the right. 2

Lemma 3.6 The rank function is in CRSF+
⊆.

Proof Given a set a, define ρ(a) by first lettingH be the transitive closure of
G(a) as a graph, that is, we start with G(a) and add an edge 〈x, y〉 whenever
there is a path from x to y, and then letting ρ(a) be the Mostowski collapse
of H. Then ρ(a) is an ordinal, since it is a transitive set of transitive sets.
Furthermore, we can show by induction on a that rank(ρ(a)) = rank(a). We
have ρ(a) = {ρ(x) : x ∈ tc(a)} so

rank(ρ(a)) = sup{rank(y) + 1 : y ∈ ρ(a)}
= sup{rank(ρ(x)) + 1 : x ∈ tc(a)}
= sup{rank(x) + 1 : x ∈ tc(a)}
= rank(a)

Hence ρ(a) = rank(a). This construction can be done in CRSF+
⊆ by defining

ρ(a) = M(a,H) where H = {〈x, y〉 ∈ [a]2 : x < y}. 2

Note that the graph H above is in general not extensional — for example,
consider what happens to the nodes {1} and 2 when a = {{1}, 2}. This
situation is similar to the appearance of a multi-valued embedding in the
construction of the rank function in [4].

Lemma 3.7 Ordinal addition and multiplication are in CRSF+
⊆.

Proof Recall from Lemma 2.10 that rank(a � b) = rank(b) + rank(a) and
rank(a#b) + 1 = (rank(b) + 1)(rank(a) + 1). Hence the function a + b =
rank(b�a) gives us ordinal addition, and we can define ordinal multiplication
by subset-bounded recursion as

a · b =
⋃
{a · c+ a : c ∈ b} ∩ rank(b#a)

since a · b ⊆ rank(b#a) for ordinals. 2

11

Lemma 3.8 For any CRSF+
⊆ function f , there is a polynomial p such that

rank(f(~a)) ≤ p(rank(~a)) and |[f(~a)]| ≤ p(|[~a]|).

Proof This is a straightforward induction on the complexity of f . 2

Corollary 3.9 Ordinal exponentiation is not in CRSF+
⊆.

Corollary 3.10 There is no CRSF+
⊆ function which, on all hereditarily fi-

nite sets x, ouputs the ordinal |x|.

Proof Let f be such a function. Take n ∈ N and let a be its power set P(n),
so f(a) is the ordinal 2n. Then rank(a) = n+ 1 while rank(f(a)) = 2n. 2

We conclude this section with a digression about the choice of initial
functions and whether they are all necessary. It turns out that Mostowski
collapse plays a more limited role in CRSF+

⊆ than might be expected. We

will show in Section 8 that for any function f(~a) in CRSF+
⊆, there is a smash-

term t(~a) and a function g(~a) in CRSF⊆ such that f(~a) = M(t(~a), g(~a)).
In other words, if we can compute a set in CRSF+

⊆, then we can already
compute a diagram of it in CRSF⊆. In particular, Mostowski collapse is not
needed if we are only interested in computing 0/1-valued functions.

We expect that we could do without cartesian product, since if we want to
quantify over pairs in a×b we could instead quantify over elements of [a#b],
using the function σa,b(x, y) where we now use the ordered pair 〈x, y〉. This
change would require some formal changes to our definitions of diagrams
and Mostowski collapse, to make use of this new system.

In the full system CRSF+
⊆ we do not need to include set composition as

an initial function, since it is easy to construct the Mostowski graph of a� b
as a diagram embedded inside a#b and then recover a� b using Mostowski
collapse.

The smash function would seem to play a central role in introducing
polynomial growth rate functions. Nonetheless, there is a natural way to
extend embedded Mostowski collapse which removes the need for the smash
function. For k ∈ N, define k-embedded Mostowski collapse as

Mk(〈~a〉, E) = {Mk(〈~b〉, E) : 〈~b〉 <k 〈~a〉 ∧ 〈〈~b〉, 〈~a〉〉 ∈ E}

where 〈~a〉, 〈~b〉 are k-tuples and <k is the lexicographic ordering given by <.
We can use the order-isomorphism between [a]k under <k and [a# · · ·#a]
(with k occurrences of a) under < to define Mk in CRSF+

⊆. In the other
direction, it is straightforward to define the smash function using M2, so
the class CRSF+

⊆ is unchanged if we remove smash and set composition and
replace M with M2. For more on <k and Mk, see Section 10.

12

4 Turing machines

We consider a simple model of infinite-time Turing machines [7]. The usual
finite Turing machines are special cases of the definition below, obtained by
considering only finite ordinals and skipping any text containing the word
“limit”.

We simulate machines operating on strings of symbols from a finite alpha-
bet of numerals 0, . . . , k−1. These strings may be finite, but more generally
will have ordinal length. We need to specify how to code such strings as
sets, so that we can manipulate them with CRSF+

⊆ functions. We do this
in a straightforward way by letting a string of length λ ≤ ω be formally a
function λ → k and dealing with this directly as a set-theoretic function,
that is, as a set of ordered pairs.2

Consider a Turing machine A with a single, one-way tape, m states,
and k symbols. We will simulate the machine running on a tape of length
λ ≤ ω for time τ , where λ and τ are ordinals (that is, λ will be either finite
or ω). A configuration of the machine is a triple 〈W, i, s〉 where the string W
is the contents of the tape, i is the position of the head and s is the state.

At each step σ + 1, machine A reads the symbol that was under the
head in step σ, then writes a symbol, changes state and moves the head, all
according to the transition function (as usual).

At limit steps σ, we set the symbol in each cell j in W to be the highest
symbol that occurs cofinally often in cell j as we range over the earlier
configurations. We change the state s to a distinguished limit state and
move the head to i = 0.

Let ConfigA(λ, I, τ) be the function that takes as inputs ordinals λ ≤ ω
and τ , and a string I of ordinal length ≤ λ, and outputs the configuration
of the machine A with tape length λ after running for τ steps on input I.

Lemma 4.1 ConfigA is in CRSF⊆.

Proof ConfigA can be defined by a straightforward recursion. The only
technical issue is to make sure that the intermediate values in the recursion

2There are other ways of handling this. In particular, over the binary alphabet we could
code strings of length λ simply as subsets of λ. We do not use this encoding here, partly to
avoid issues of how to mark the end of a string, but we will use it beginning in Section 5.1
where we will be dealing with strings of fixed size. An alternative where we explicitly
record the length λ would be to code binary strings a0a1 . . . as pairs 〈λ, {i < λ : ai = 1}〉.
This would be essentially equivalent to the coding used in the current section, since there
are CRSF+

⊆ functions translating in both directions between them.

13

are all subsets of a set we can construct. We assume that λ and τ are
ordinals and will write < rather than ∈ for membership in an ordinal.

Let F (λ, I, τ) be the function that, on well-formed inputs, outputs

{τ}×W ×{i}×{s} = {〈τ, a, i, s〉 : a ∈W}

where 〈W, i, s〉 is the configuration of M at step τ . Then

F (λ, I, τ) ⊆ {τ}× (λ×k)×λ×m

so we can potentially define F directly by subset-bounded recursion. To do
so, we must show how to compute F (λ, I, τ) from S = {F (λ, I, σ) : σ < τ}.
Observe that for σ < τ we can recover F (λ, I, σ) from S as the subset of

⋃
S

consisting of elements with first component σ. In particular we can recover
the tape contents Wσ at step σ by separation as

Wσ = {a ∈ λ×k : ∃i<λ ∃s<m 〈σ, a, i, s〉 ∈
⋃
S}

and can similarly recover the head position iσ and the state sσ.
If τ = 0 then we let i = 0, let s be the starting state, and let W be

the input string I, padded out as necessary to length λ with pairs 〈j, 0〉
(assuming without loss of generality that the symbol 0 stands for “blank”).
If σ :=

⋃
τ ∈ τ then τ is the successor ordinal σ + 1. Using Wσ, iσ, sσ and

the transition function of M , we compute W using separation and change i
and s appropriately.

Otherwise τ is a limit. We let s be the limit state and let i = 0. The set
of symbols occurring cofinally often in cell j is

Xj = {x < k : ∀σ<τ ∃σ′<τ (σ < σ′ ∧ 〈j, x〉 ∈Wσ′)}.

Hence
⋃
Xj is the maximum symbol that occurs cofinally often in cell j,

and we can let W = {a ∈ λ×k : a = 〈j,
⋃
Xj〉}.

This shows that F is in CRSF⊆. The lemma follows. 2

As usual, {0, 1}∗ denotes the set of finite binary strings.

Theorem 4.2 Every polynomial time function from {0, 1}∗ to {0, 1}∗ is in
CRSF+

⊆.

Proof Suppose f is computed by a Turing machine A which halts in time nc

on inputs of length n > 1. Given a finite string w, in CRSF+
⊆ we can compute

the length n of w as {i ∈
⋃⋃

w : ∃x<k 〈i, x〉 ∈ w}. We then compute nc

(using Lemma 3.7) and ConfigA(nc, w, nc), and the output of f can easily
be obtained from this. 2

14

The only use of Mostowski collapse in the proof of Theorem 4.2 is to
obtain nc from n. If we instead let m = n# · · ·#n (where n appears c times)
then m is order-isomorphic to (n + 1)c − 1, and we can prove a version
of Lemma 4.1 that avoids using Mostowski collapse, by simulating Turing
machine computations of length nc using ∈-recursion onm rather than on nc.
All that prevents us from carrying out the whole proof of the theorem in
this way is that, under our coding of binary strings as sets, we must be able
to convert the output into a sequence indexed by an ordinal. This is not a
problem for very simple outputs, so we have:

Theorem 4.3 Every polynomial time relation on {0, 1}∗ is in CRSF⊆.

As a converse of Theorem 4.2 we have the following.

Theorem 4.4 Every CRSF+
⊆ function from {0, 1}∗ to {0, 1}∗ is in polyno-

mial time.

Proof We use the same argument as [4]. The theorem follows from the
more general observation that for any CRSF+

⊆ function f(x1, . . . , xr) there is
a polynomial time function which, for any hereditarily finite sets a1, . . . , ar,
given graphs G(a1), . . . ,G(ar) outputs G(f(a1, . . . , ar)) (up to graph isomor-
phism) using the standard encoding of directed graphs as strings. This is
proved by induction on the complexity of f . The bound on recursion guar-
antees that the sizes of the graphs involved do not grow too fast. 2

We now move to infinite-time machines. Following [12], a function from
{0, 1}ω to {0, 1}ω is polynomial time if it is computed by an infinite-time
Turing machine with three tapes (an input tape, an output tape and a
working tape) which always halts after at most ωd steps, for some fixed
exponent d ∈ N.

Theorem 4.5 Every polynomial time function from {0, 1}ω to {0, 1}ω is in
CRSF⊆.

Proof This is proved in the same way as Theorem 4.3, with minor changes
to accommodate simulating three tapes rather than one. Since the output
sequence is a subset of ω×2, we can use separation to construct it from the
output of ConfigM and do not need Mostowski collapse. 2

Theorem 4.6 Every CRSF+
⊆ function from {0, 1}ω to {0, 1}ω is polynomial

time.

15

Proof It is shown in [3] that every such function from {0, 1}ω to {0, 1}ω in
the class SRSF is polynomial time. By results in [4] and in Section 9 below,
every function in CRSF+

⊆ is in SRSF. 2

5 Bisimilarity and coding

This section discusses the generalized notion of binary strings, then bisimu-
lation, and then coding collections of sets.

5.1 a-strings

Definition 5.1 Let a be any set. An a-string is a subset of a.

We will sometimes informally identify an a-string with its characteristic
function a → {0, 1}. In this sense, for finite ordinals k, the usual binary
strings in {0, 1}k of complexity theory correspond to the k-strings. For ex-
ample, the binary string 01101 ∈ {0, 1}5 corresponds to the 5-string {0, 2, 3}
(writing the most significant bit on the left).

For us, the most important use of a-strings is to encode sets via a
Mostowski collapse:

Definition 5.2 We say that a diagram 〈a,E〉 codes the set M(a,E). If a
is fixed and E is an [a]2-string, we say E codes the set M(a,E).

This way of coding sets, as a size parameter a together with an [a]2-
string E, is designed to work well with subset-bounded recursion.

5.2 Bisimilarity

We will frequently need to recognize when two diagrams code the same set
even in situations where the Mostowski collapse function is not available. If
we are dealing with extensional, accessible pointed diagrams, then two such
diagrams code the same set if and only if they are isomorphic. However
our diagrams are typically neither, so we will instead use the notion of
bisimilarity (see for example [1]). This is very well-behaved on well-founded
graphs.

Definition 5.3 A bisimulation between directed graphs G and H is a rela-
tion ∼ relating nodes of G to nodes of H, such that for all nodes u in G
and v in H, u ∼ v holds if and only if both of the following hold:

16

1. For every predecessor u′ of u in G, there is a predecessor v′ of v in H
such that u′ ∼ v′

2. For every predecessor v′ of v in H, there is a predecessor u′ of u in G
such that u′ ∼ v′.

Recall that a diagram 〈a,E〉 represents the directed graph with nodes [a]
and edges [a]2 ∩ E.

Definition 5.4 We say that two diagrams 〈a,E〉 and 〈b, F 〉 are bisimilar if
there is a bisimulation ∼ between 〈a,E〉 and 〈b, F 〉 such that a ∼ b.

Lemma 5.5 There is at most one bisimulation between two diagrams.

Proof Suppose ∼1 and ∼2 are distinct bisimulations between diagrams
〈a,E〉 and 〈b, F 〉. Choose u <-minimal in [a] such that there is a v ∈ [b] for
which ∼1 and ∼2 differ on the pair 〈u, v〉, and fix a <-minimal such v. Then
∼1 and ∼2 agree on all predecessors of u and v. Therefore, by the definition
of a bisimulation, they must agree on 〈u, v〉, giving a contradiction. 2

Lemma 5.6 Given diagrams 〈a,E〉, 〈b, F 〉, there is at least one bisimula-
tion between them, and they are bisimilar if and only if M(a,E) = M(b, F).

Proof Define a relation ∼ by u ∼ v if and only if M(u,E) = M(v, F).
It follows directly from the definitions that this is a bisimulation between
〈a,E〉 and 〈b, F 〉. We then apply Lemma 5.5. 2

Lemma 5.7 There is a CRSF⊆ function B(a,E, b, F) computing the bisim-
ulation between diagrams 〈a,E〉 and 〈b, F 〉, by outputting the bisimulation
as a set of ordered pairs.

Proof First observe that B(a,E, b, F) ⊆ [a] × [b], so we can potentially
define B directly by a subset-bounded recursion. We will use recursion
on a. Given a set S = {∼c : c ∈ a}, where each ∼c is the bisimulation
between 〈c, E〉 and 〈b, F 〉 output by B(c, E, b, F), let ∼ =

⋃
S. Then by the

uniqueness of bisimulations, ∼ ∩ ([c] × [b]) = ∼c for every c ∈ a. It follows
that ∼ has all the properties of a bisimulation between 〈a,E〉 and 〈b, F 〉
except possibly at a, and we can extend ∼ to a by adding a pair 〈a, y〉 for
every y ∈ [b] which satisfies both conditions from Definition 5.3. 2

17

5.3 Coding collections of sets

We use a generalized notion of a 0/1 matrix to allow a single set W to encode
a collection of sets. The intuition is that the pairs 〈c, x〉 in W encode the
Mostowski graph of the c-th set encoded by W .

Definition 5.8 For sets W and c, we define the c-th row ofW , denoted W (c),
as the set {x : 〈c, x〉 ∈W}.

Note that W (c) ⊆
⋃⋃

W , so the function W, c 7→ W (c) is in CRSF⊆ by
separation. The next lemma allows us to use such a matrix to code a set of
sets.

Lemma 5.9 The function f(W,a, b) = {M(a,W (c)) : c ∈ b} is in CRSF+
⊆.

Proof Let e = b#a. Our strategy is to construct from W a single embedded
graph 〈e, E〉 such that f(W,a, b) = M(e, E). We will write σ, π1, π2 for the
functions σb,a, π1,b,a, π2,b,a. Define

E′ = {〈u, v〉 ∈ [e]2 : π1(u) = π1(v) 6= b ∧ 〈π2(u), π2(v)〉 ∈W (π1(u))}.

For each c < b this puts the structure of W (c)∩ [a]2 onto copy c of the graph
of a inside the graph of e, so that M(σ(c, a), E′) = M(a,W (c)). On the other
hand σ(b, a) = e is not connected to anything in E′, so M(e, E′) = 0. Let
E = E′∪{〈σ(c, a), e〉 : c ∈ b}. Then M(e, E) equals {M(σ(c, a), E′) : c ∈ b},
which is the required set. 2

6 Boolean circuits

This section defines computations with unbounded fan-in Boolean circuits
encoded by sets. We first introduce circuits that compute functions mapping
strings to strings. We then extend this to circuits computing set functions,
which operate on sets encoded as diagrams or strings. The set value that is
computed by the circuit will be extracted from its output using the embed-
ded Mostowski collapse.

Definition 6.1 A circuit is a triple 〈c, E, λ〉 where 〈c, E〉 is a diagram and λ
is a function from [c] to the set of symbols {0, 1, ∗,

∧
,
∨
,¬} (which we iden-

tify with the numbers 0, . . . , 5) such that each node labelled ¬ has exactly one
E-predecessor. The nodes labelled ∗ are called input nodes. We say that the
circuit has size c.

18

Conjuctions and disjunctions may have arbitrary fan-in. The labels 0
and 1 represent the constant values False and True.

Definition 6.2 Let C = 〈c, E, λ〉 be a circuit, and let a be its set of input
nodes. Given any a-string A, a computation of C on A is a [c]-string W
which, informally, assigns 0/1 values to the nodes of C in such a way that
each input node gets the same value that it has in A, and all other nodes get
values according to the usual interpretations of their symbols in a circuit.
That is, for all u ∈ [c],

1. if λ(u) = 0 then u /∈W
2. if λ(u) = 1 then u ∈W
3. if λ(u) = ∗ then u ∈W ↔ u ∈ A
4. if λ(u) =

∧
then u ∈W ↔ ∀v<u (〈v, u〉 ∈ E → v ∈W)

5. if λ(u) =
∨

then u ∈W ↔ ∃v<u (〈v, u〉 ∈ E ∧ v ∈W)

6. if λ(u) = ¬ then u ∈W ↔ ∃v<u (〈v, u〉 ∈ E ∧ v /∈W).

In general, to guarantee that a circuit has a computation it is enough
for the graph underlying the circuit to be well-founded. However we need
the extra condition that the graph is embedded in c for the next lemma.

Lemma 6.3 There is a CRSF⊆ function which takes a circuit C and an
a-string A, as in Definition 6.2, and outputs a computation of C on A.

Proof Let f(C,A, v) be the function that outputs a [v]-string assigning
correct values to all nodes u ≤ v in the circuit. Since f(C,A, v) ⊆ [v] it is
possible to define f directly by subset-bounded recursion. Suppose we are
given S = {f(C,A, u) : u ∈ v}. Then W ′ =

⋃
S assigns the correct values

to all nodes u of the circuit with u < v, and since 〈c, E〉 is a diagram, this
includes all nodes such that 〈u, v〉 ∈ E. Hence we have enough information
to extend W ′ to a [v]-string W which also assigns the correct value to v,
and clearly this can be done in CRSF⊆. 2

We extend the definition to handle computations on tuples of strings.
When c, a1, . . . , ak and p are finite ordinals, the following is equivalent to
the usual definition of a finite Boolean circuit.

Definition 6.4 A circuit with input sizes a1, . . . , ak and output size p is a
tuple 〈c, E, λ,~a, p, µ, ν〉 where 〈c, E, λ〉 is a circuit and we are also given

19

1. A partial function µ : [c]→ ({0}×a1)∪· · ·∪ ({k−1}×ak) which maps
every input node to a member of (a disjoint copy of) some ai, and

2. A function ν : p → [c] which maps every element of p to some node
in [c]. We call the range of ν the output nodes.

Definition 6.5 The circuit evaluation function takes inputs C, ~A where
C = 〈c, E, λ,~a, p, µ, ν〉 is a circuit and ~A is a tuple of strings, with each
Ai an ai-string. It outputs the p-string C(~A) computed by C on inputs ~A.

Lemma 6.6 The circuit evaluation function is in CRSF⊆.

Proof We construct a computation W of the circuit as in the proof of
Lemma 6.3. We recover the output by separation as {i ∈ p : ν(i) ∈W}. 2

Definition 6.7 A family C~a of circuits parametrized by a tuple ~a of sets is
small if there are smash-terms s, t, u1, . . . , uk such that the size of C~a is s(~a),
and C~a has input sizes u1(~a), . . . , uk(~a) and output size t(~a). We say that a
family C

~a,~b
is small with size bounds independent of ~b if the parameters ~b

do not appear in any of these smash-terms.

Consider a set function f(x) which, when its inputs are sets embeddable
in a, outputs a set embeddable in p. Using diagrams, we can code the inputs
and output of f respectively as [a]2-strings and [p]2-strings. We can then
ask whether the corresponding function from strings to strings is computed
by a small circuit.

Definition 6.8 Let f(x1, . . . , xk) be any set function and let a1, . . . , ak be a
tuple of sets. Suppose that C is a circuit with input sizes [a1]2, . . . , [ak]

2 and
output size [p]2 for some p, such that for every tuple E1, . . . , Ek of strings,
with each Ei an [ai]

2-string, we have

M(p, C(E1, . . . , Ek)) = f(M(a1, E1), . . . ,M(ak, Ek))

where C(E1, . . . , Ek) is the [p]2-string as defined in Lemma 6.6. Then we
say that C computes f on sets embeddable in a1, . . . , ak.

We say that f has small circuits if there is a family C~a of small circuits
such that, for all ~a, C~a computes f on sets embeddable in ~a.

We next describe a class of simple formulas, which we will use both for
constructing circuits and to define a notion of uniformity for circuits. Note
that the terms in the language below are exactly the smash-terms.

20

Definition 6.9 A ∆#
0 formula is a formula in the language {∈, 0, pairing,

tc, ×, �, #} in which all quantifiers are bounded, of the form ∃x<t or

∀x<t . We say that a family of sets is ∆#
0 -definable (with parameters ~z) if

there is a ∆#
0 formula ϕ and a smash-term t such that the sets in the family

have the form {u ∈ t(~z) : ϕ(u, ~z)}.

Definition 6.10 A family C~z of circuits is ∆#
0 -uniform if it is small and

the sets E ⊆ [c]2, λ ⊆ [c]× 6, µ ⊆ [c]× (({0}× a1)∪ · · · ∪ ({k−1}× ak)) and

ν ⊆ p× [c] describing the circuit C~z are all ∆#
0 -definable with parameters ~z.

Below, to save space we will write e.g. “a1, . . . , ak-strings A1, . . . , Ak”
instead of “an a1-string A1, an a2-string A2, . . . ” etc.

The next lemma states that the truth-sets of certain kinds of ∆#
0 formu-

las can be computed by ∆#
0 -uniform circuits. This is a crucial tool under-

lying the proof in Section 7 that CRSF+
⊆ has small circuits.

Lemma 6.11 Let ϕ be a ∆#
0 formula

ϕ(x1, . . . , x`, a1, . . . , am, b1, . . . , bn, U1, . . . , Uk)

in which all occurrences of variables Ui are immediately to the right of an
∈ symbol in an atomic formula of the form t ∈ Ui, and in which only vari-
ables ai can appear in terms bounding quantifiers. It is not necessary that
all the variables are present in ϕ. Let t(~a), s1(~a), . . . , sk(~a) be smash-terms.

There is a ∆#
0 -uniform family of circuits C

~a,~b
with size bounds indepen-

dent of ~b, with input sizes s1(~a), . . . , sk(~a) and output size t(~a), such that
for all ~a and ~b and all s1(~a), . . . , sk(~a)-strings U1, . . . , Uk we have

C
~a,~b

(~U) = {〈~x〉 ∈ t(~a) : ϕ(~x,~a,~b, ~U)}.

Proof We fix m, n and k and use induction on the complexity of ϕ. Circuits
will be given with descriptions that can easily be turned into ∆#

0 formulas.

Suppose ϕ has the form r1(~x,~a,~b) ∈ r2(~x,~a,~b) for terms r1, r2. We
compute the t(~a)-string

{〈~x〉 ∈ t(~a) : r1(~x,~a,~b) ∈ r2(~x,~a,~b)}

using a circuit of size t(~a). Each node u ∈ [t(~a)] of the circuit is labelled 1 if
u = 〈~x〉 for some ~x with r1(~x,~a,~b) ∈ r2(~x,~a,~b), and is otherwise labelled 0
(there are no input nodes or nodes labelled with connectives). The set E of

21

edges is empty. The function ν mapping elements of the output size t(~a) to
output nodes is just the identity.

The case where ϕ has the form r(~x,~a,~b) ∈ Ui is broadly similar. This
time each node u ∈ [t(~a)] is labelled with a ∗ (that is, as an input node)
if u = 〈~x〉 for some ~x with r(~x,~a,~b) ∈ si(~a), and is otherwise labelled 0.
The output is arranged as in the previous case. The function µ mapping
input nodes to the disjoint union of input sizes maps 〈~x〉 to 〈i−1, r(~x,~a,~b)〉
(we use i−1 to match the notation in Definition 6.4), with the result that a
computation W assigns 1 to 〈~x〉 if and only if r(~x,~a,~b) ∈ Ui.

Suppose ϕ has the form ϕ1∧ϕ2. Let C1 and C2 be circuits for respectively

{〈~x〉 ∈ t(~a) : ϕ1(~x,~a,~b, ~U)} and {〈~x〉 ∈ t(~a) : ϕ2(~x,~a,~b, ~U)}

with sizes c1 = c1(~a) and c2 = c2(~a). We define a circuit D with size
d = t(~a)�{c2}� {c1}. This means that the underlying graph of D consists
of a copy of G(c1) at the bottom, with a copy of G(c2) above it, and a copy
of G(t(~a)) above that, with the sink node of each component connected to
the source node of the next component. We will call the components C ′1,
C ′2 and O. The labellings, edges and connections to inputs in C ′1 are copied
from C1, and similarly for C ′2 and C2. So, for example, if C2 has an edge
〈u, v〉 then D has an edge 〈u � {c1}, v � {c1}〉. The function ν maps every
element of the output size t(~a) to the corresponding node of O, that is,
ν : u 7→ u � {c2} � {c1}, and these nodes in the image of ν are labelled
with

∧
. The other nodes of O are labelled with 0 and are not used. Finally,

in the original circuits each u ∈ t(~a) was associated with an output node
ν1(u) in C1 and an output node ν2(u) in C2. In D we connect each node
u � {c2} � {c1} labelled

∧
in O to the nodes of D corresponding to ν1(u)

and ν2(u), that is, to ν1(u) in C ′1 and ν2(u)� {c1} in C ′2.

Suppose ϕ has the form ∀x′∈s(~a)ψ(x′, ~x,~a,~b, ~U). Let C be a circuit for

{〈x′, ~x〉 ∈ s(~a)× t(~a) : ψ(x′, ~x,~a,~b, ~U)}

with size c = c(~a). We construct a circuit D of size t(~a) � {c}, consisting
of C with a copy O of G(t(~a)) above it, similarly to the previous case. For
the output nodes of D we take all nodes u�{c} in O for u ∈ t(~a), and label
them with

∧
. If such a node has the form 〈~x〉 � {c}, we connect it by an

edge to every output node νC(〈x′, ~x〉) in C with x′ ∈ s(~a), where νC is C’s
function mapping elements of its output size s(~a)× t(~a) to its output nodes.

Negation is handled similarly. 2

We finish this section by giving three concrete examples of families of
small uniform circuits, all of which we will need in the next section. The

22

first example, union, is now an easy consequence of Lemma 6.11. The other
two, circuits for computing bisimilarity and the ancestor relation, are more
complicated.

Lemma 6.12 The union function has ∆#
0 -uniform circuits.

Proof Let 〈a,E〉 be a diagram. Let the [a]2-string F be defined from the
[a]2-string E by

〈x, y〉 ∈ F ⇔
{
〈x, y〉 ∈ E if y 6= a
∃z∈[a], 〈x, z〉 ∈ E ∧ 〈z, a〉 ∈ E if y = a.

Then M(a, F) =
⋃
M(a,E). The result follows by Lemma 6.11. 2

For the next two examples we will need a technical lemma, to help con-
struct circuits defined using smash.

Lemma 6.13 For x ∈ [a], y ∈ [b] and w ∈ [a#b] the relation σa,b(x, y) = w

is definable by a ∆#
0 formula which uses only terms in a and b as bounds on

quantifiers.

Proof We have σa,b(x, y) = w if and only if w = y � {z#b : z ∈ x}, which
holds if and only if

∃s∈[w], w = y � s ∧ s = {z#b : z ∈ x}.

This is ∆#
0 -definable, and we can bound all quantifiers by [a#b] ∪ [a]. 2

Lemma 6.14 There is a family Ca,b of ∆#
0 -uniform circuits, with input

sizes [a]2 and [b]2 and with output size [a]× [b], which take an [a]2-string E
and a [b]2-string F and output a string giving the bisimulation between dia-
grams 〈a,E〉 and 〈b, F 〉.

Proof We will imitate the recursion on a used to show that bisimilarity
is in CRSF⊆ in Lemma 5.7. For u ∈ [a] we write ∼u for the bisimulation
between 〈u,E〉 and 〈b, F 〉, which we treat as a [a]× [b]-string.

Let Ru =
⋃
{∼u′ : u′ ∈ u}. Then for 〈x, y〉 ∈ [a]×[b] we have 〈x, y〉 ∈∼u if

and only if either 〈x, y〉 ∈ Ru, or x = u and the conditions from Definition 5.3
hold, that is,

∀x′∈[a]
(
〈x′, x〉 ∈ E → ∃y′∈[b] (〈y′, y〉 ∈ F ∧ 〈x′, y′〉 ∈ Ru)

)
∧ ∀y′∈[b]

(
〈y′, y〉 ∈ F → ∃x′∈[a] (〈x′, x〉 ∈ E ∧ 〈x′, y′〉 ∈ Ru)

)
.

23

Thus ∼u is expressed by a ∆#
0 formula to which we can apply Lemma 6.11,

giving ∆#
0 -uniform circuits Ca,b,u computing ∼u from E, F and Ru, with

size bounds independent of u. Let t = t(a, b) be the size of Ca,b,u and let
λu, µu and νu be the functions describing respectively its internal, input and
output gates.

Our circuit C computing bisimulations has size a#t and functions λ, µ
and ν. It is formed as follows. For each u ∈ [a]:

1. C has an edge 〈σa,t(u, x), σa,t(u, y)〉 for each edge 〈x, y〉 in Ca,b,u.

2. For each x ∈ [t], the internal gate λ(σa,t(u, x)) is the same as λu(x).

3. For each x ∈ [t], if µu(x) = 〈0, z〉 for z ∈ [a]2 (representing an input
from E) or if µu(x) = 〈1, z〉 for z ∈ [b]2 (representing an input from F)
then σa,t(u, x) is an input node of C and µ(σa,t(u, x)) = µu(x).

In other words via the map x 7→ σa,t(u, x) the u-th copy of t inside a#t,
which we will call Cu, is given the same internal structure as Ca,b,u and
accesses inputs from E and F in the same way. Then:

4. For each x ∈ [t], if µu(x) = 〈2, z〉 for z ∈ [a]×[b] (representing an input
from Ru) then λ(σa,t(u, x)) =

∨
and for each u′ ∈ u there is an edge in

C connecting σa,t(u, x) with the “output node” of Cu′ corresponding
to z, that is, the node σa,t(u

′, νu′(z)). (If u = 0, this is equivalent to
setting λ(σa,t(u, x)) = 0.)

5. For each z ∈ [a]× [b] we set ν(z) = σa,t(a, νa(z)).

By item 4 the [a]× [b]-string that the subcircuit Cu gets as its third “input”
is the union of the [a]×[b]-strings “output” by the subcircuits Cu′ for u′ ∈ u.
Thus by induction on u the “output” of Cu is ∼u. Finally item 5 reads off
the “output” of the top subcircuit Ca as the output of our circuit C. 2

Lemma 6.15 There is a family Ca of ∆#
0 -uniform circuits, with input and

output size [a]2, which take as input a string E and output a string giving
the relation “x is an E-ancestor of y in the diagram 〈a,E〉”.

Proof Let us write �u for the E-ancestor relation on 〈u,E〉. Let Ru =⋃
{�v : v ∈ u}. Then for x, y ∈ [u], we have 〈x, y〉 ∈ �u if and only if

x = y ∨ 〈x, y〉 ∈ Ru ∨ ∃z∈[a] (z < y ∧ 〈x, z〉 ∈ Ru ∧ 〈z, y〉 ∈ E).

Hence by Lemma 6.11 there is a small, ∆#
0 -uniform circuit Ca,u computing

�u from E and Ru, with size t(a) independent of u.
Our circuit has size a#t(a) and is formed by taking G(a) and replacing

each node u with a copy of Ca,u, adding edges so that Ca,u gets as input E
and the union of the outputs of Ca,v for v ∈ u, exactly as in Lemma 6.14. 2

24

7 Small circuits for CRSF+
⊆

Theorem 7.1 Every CRSF+
⊆ function has ∆#

0 -uniform circuits.

To prove this it is enough to show that all our initial functions have such
circuits, and that the class of functions with such circuits is closed under
composition and subset-bounded recursion.

Lemma 7.2 The class of set functions with ∆#
0 -uniform circuits is closed

under composition.

Proof Let g be an m-ary set function computed by a circuit family D~x

with size d(~x). Let f1, . . . , fm be n-ary set functions, with fi computed by
a circuit family Ci~y with size ci(~y) and output size [si(~y)]2. Then the circuit

to compute the composition of g and ~f on inputs embeddable in ~y has size

d(s1(~y), . . . , sm(~y))� {cm(~y)} � · · · � {c1(~y)}

and is formed in the obvious way, by connecting copies of Ds1(~y),...,sm(~y) and
C1
~y , . . . , C

m
~y together. 2

7.1 Initial functions

The projection function is trivial, and we dealt with the union function in
Lemma 6.12. Pairing, conditional, set composition, set smash, transitive
closure, cartesian product and embedded Mostowski collapse remain. In
each case the proof uses Lemma 6.11.

Lemma 7.3 The pairing function has ∆#
0 -uniform circuits.

Proof Given diagrams 〈a,E〉 and 〈b, F 〉 let c = {b}�{a}, so that G(c) has
the structure of, first, a copy of G(a), then an edge connecting its sink to
the source of a copy of G(b), then an edge connecting the sink of that to the
global sink c. Let 〈x, y〉 ∈ G if and only if one of the following holds:

1. 〈x, y〉 ∈ E
2. 〈x, y〉 = 〈x′ � {a}, y′ � {a}〉 for some 〈x′, y′〉 ∈ F
3. y = c and either x = a or x = b� {a}.

By items 1 and 2, M(a,G) = M(a,E) and M(b�{a}, G) = M(b, F). Hence
by item 3, M(c,G) = {M(a,E),M(b, F)} as required. The lemma now
follows from Lemma 6.11. 2

25

Lemma 7.4 (The characteristic functions of) membership and equality have

∆#
0 -uniform circuits.

Proof This follows from Lemma 6.14. For example, to compute member-
ship, given diagrams 〈a,E〉 and 〈b, F 〉 we first construct a subcircuit comput-
ing the bisimulation ∼ between 〈a,E〉 and 〈b, F 〉. Then M(a,E) ∈M(b, F)
if and only if there exists u < b with 〈u, b〉 ∈ F and a ∼ u. 2

Lemma 7.5 The cond∈ function has ∆#
0 -uniform circuits.

Proof Recall that the function cond∈(e, f, g, h) takes the value e if g ∈ h
and takes the value f otherwise. Suppose we are given diagrams 〈a,E〉,
〈b, F 〉, 〈c,G〉 and 〈d,H〉. We will output a diagram 〈b � a, I〉. Our circuit
is formed from four subcircuits, which we will call W , X, Y and Z. These
are combined in a similar way to Lemma 7.2.

The subcircuitW computes whetherM(c,G) ∈M(d,H), as in Lemma 7.4.
The subcircuit X computes a [b� a]2 string IE with

〈x, y〉 ∈ IE ⇔
{
〈x, y〉 ∈ E if y 6= a
〈x, a〉 ∈ E if y = b� a

so that IE has the structure of E but with the sink node moved to b � a,
giving M(b� a, IE) = M(a,E).

The subcircuit Y computes a [b� a]2 string IF with

〈x, y〉 ∈ IF ⇔ 〈x, y〉 = 〈x′ � a, y′ � a〉 for some 〈x′, y′〉 ∈ F

so that M(b� a, IF) = M(b, F).
Finally, the subcircuit Z takes the outputs of W , X and Y , and out-

puts IE if M(c,G) ∈M(d,H) and IF otherwise. 2

Lemma 7.6 The set composition function � has ∆#
0 -uniform circuits.

Proof Suppose we are given diagrams 〈a,E〉 and 〈b, F 〉. We will output a
diagram 〈a� b,G〉, where 〈x, y〉 ∈ G if one of the following holds:

1. 〈x, y〉 ∈ F
2. 〈x, y〉 = 〈b, y′ � b〉 for some 〈x′, y′〉 ∈ E where x′ is a source node

of 〈a,E〉
3. 〈x, y〉 = 〈x′ � b, y′ � b〉 for some 〈x′, y′〉 ∈ E where x′ is not a source

node of 〈a,E〉

26

By item 1, M(b,G) = M(b, F). Items 2 and 3 put the structure of 〈a,E〉
onto the copy of G(a) inside G(a� b), except that all source nodes of 〈a,E〉
get mapped to b. Hence M(a� b,G) = M(a,E)�M(b, F). 2

Lemma 7.7 The set smash function # has ∆#
0 -uniform circuits.

Proof Suppose we are given diagrams 〈a,E〉 and 〈b, F 〉. We will output a
diagram 〈a#b,G〉, where 〈x, y〉 ∈ G if either of the following hold:

1. 〈x, y〉 = 〈σa,b(u, x′), σa,b(u, y′)〉 for some u ∈ [a] and 〈x′, y′〉 ∈ F
2. 〈x, y〉 = 〈σa,b(u, b), σa,b(v, x)〉 for some 〈u, v〉 ∈ E and some source

node x of 〈b, F 〉.

Here item 1 puts a copy of the structure of F onto each copy of G(b) inside
G(a#b), and item 2 connects the sources and sinks of these copies according
to the edges of E. Hence M(a#b,G) = M(a,E)#M(a,B). 2

Lemma 7.8 Transitive closure has ∆#
0 -uniform circuits.

Proof We are given a diagram 〈a,E〉 and will output a diagram 〈a, F 〉. We
first use Lemma 6.15 to construct a subcircuit computing the E-ancestor
relation on 〈a,E〉 as an [a]2-string R. We then compute F as E ∪ {〈x, a〉 :
〈x, a〉 ∈ R}, so that M(a, F) = tc(M(a,E)). 2

Lemma 7.9 Cartesian product has ∆#
0 -uniform circuits.

Proof We are given diagrams 〈a,E〉 and 〈b, F 〉. We will output a diagram
〈c,G〉 where c = ((a×b)#2)�{b}�{a}. We begin by copying the structures
of 〈a,E〉 and 〈b, F 〉 onto the copies of G(a) and G(b) inside G(c), so that
M(a,G) = M(a,E) and M(b� {a}, G) = M(b, F).

Recall that ordered pairs are defined as 〈e, f〉 = {{e}, {e, f}}. At the
top of G(c), the graph G((a× b)#2) contains a disjoint copy of G(2) for each
〈x, y〉 ∈ a× b. Let

τ : z 7→ σa×b,2(〈x, y〉, z)� {b} � {a}

be the mapping from G(2) to this copy of G(2). If 〈x, a〉 ∈ E and 〈y, b〉 ∈ F
then we add to G the edges

1. 〈x, τ(0)〉, so that M(τ(0), G) = {M(x,E)}
2. 〈x, τ(1)〉 and 〈y�{a}, τ(1)〉, so that M(τ(1), G) = {M(x,E),M(y, F)}

27

3. 〈τ(0), τ(2)〉, 〈τ(1), τ(2)〉 and 〈τ(2), c〉, so that 〈M(x,E),M(y, F)〉 ∈
M(c,G).

We do this for every 〈x, y〉 ∈ a× b. Hence M(c,G) = M(a,E)×M(y, F). 2

Lemma 7.10 Embedded Mostowski collapse has ∆#
0 -uniform circuits.

Proof We are given diagrams 〈b,Ga〉 and 〈c,GE〉. We will output a diagram
〈b,H〉 such that if we let a = M(b,Ga) and E = M(c,GE) then

M(b,H) = M(a,E).

For any set x, define κ(x) = M(x,Ga), so that κ(b) = a. We put

H = {〈x, y〉 ∈ [b]2 : x < y ∧ κ(x) < κ(y) ∧ 〈κ(x), κ(y)〉 ∈ E}.

Before showing how to compute H with a circuit, we prove that M(b,H) =
M(a,E). We will show by ∈-induction on y that M(y,H) = M(κ(y), E) for
all y ∈ [b]. Suppose this is true for all x < y. Then

M(y,H) = {M(x,H) : x < y ∧ 〈x, y〉 ∈ H}
= {M(κ(x), E) : x < y ∧ κ(x) < κ(y) ∧ 〈κ(x), κ(y)〉 ∈ E}
= {M(z, E) : z < κ(y) ∧ 〈z, κ(y)〉 ∈ E}
= M(κ(y), E).

Here the first and fourth equalities are the definition of M , and the second
follows from the inductive hypothesis and the definition of H. One direction
of the third equality follows from setting z = κ(x). For the other direction,
let z < κ(y) and 〈z, κ(y)〉 ∈ E. Since z < κ(y) there is a finite sequence
z1, . . . , zk such that z = z1 ∈ · · · ∈ zk ∈ κ(y). By the definition of κ, there
is some xk < y such that zk = κ(xk). Similarly we can find xk−1 < xk such
that zk−1 = κ(xk−1), and so on until we find x1 < x2 with z = z1 = κ(x1).
We put x = x1.

To compute H with a circuit, we first construct subcircuits computing
the bisimulation ∼a between 〈b,Ga〉 and 〈b,Ga〉; the bisimulation ∼a,E be-
tween 〈b,Ga〉 and 〈c,GE〉; the bisimulation ∼E between 〈c,GE〉 and 〈c,GE〉;
and the Ga-ancestor relation /a on 〈b,Ga〉. Then for x, y ∈ [b],

κ(x) < κ(y)⇔M(x,Ga) ∈ tc(M(y,Ga))

⇔ ∃u<y, x ∼a u ∧ u /a y.

28

On the other hand, 〈κ(x), κ(y)〉 ∈ E if and only if

∃x′, y′<c, M(x,Ga) = M(x′, GE) ∧ M(y,Ga) = M(y′, GE)

∧ 〈M(x′, GE),M(y′, GE)〉 ∈M(c,GE)

which is equivalent to

∃x′, y′<c, x ∼a,E x′ ∧ y ∼a,E y′ ∧ “〈c,GE〉 � 〈x′, y′〉 ∈ c”.

where the expression in quotation marks means that we interpret 〈x′, y′〉 ∈ c
in the universe [c] with the membership relation given by GE and equality

given by ∼E . This can be written as a ∆#
0 formula. 2

7.2 Closure under recursion

Lemma 7.14 below establishes closure under subset-bounded recursion. We
will need a few gadgets for the proof.

Lemma 7.11 The function x, y 7→ x∩y has ∆#
0 -uniform circuits. Further-

more we may assume that the circuit Ca,b computing it on sets embeddable
in a, b outputs an [a]2-string E for a diagram 〈a,E〉.

Proof We are given diagrams 〈a,X〉 and 〈b, Y 〉. We first build a subcircuit
to compute the bisimulation ∼ between them, then put

〈i, j〉 ∈ E ⇔
{
〈i, j〉 ∈ X if j 6= a
〈i, j〉 ∈ X ∧ ∃i′∈[b], 〈i′, b〉 ∈ Y ∧ i ∼ i′ if j = a. 2

Lemma 7.12 There is a ∆#
0 -uniform family Ca,u of circuits with size bounds

independent of u which, for u ≤ a, take as input an [a]2-string X and output
an [a]2-string E such that M(a,E) = M(u,X).

Proof If u = a we output X. Otherwise we take X, remove all edges 〈i, a〉,
then add an edge 〈i, a〉 for every 〈i, u〉 ∈ X, and output the result. 2

Lemma 7.13 There is a ∆#
0 -uniform family Ca,b,u of circuits with size

bounds independent of u which, for u ≤ a, take as input an [a]× [b]2-string
W and an [a]2-string X, and output an [a#b]2 string E such that

M(a#b, E) = {M(b,W (v)) : v < u ∧ 〈v, u〉 ∈ X}.

29

Proof We repeat the construction from the proof of Lemma 5.9. We will
write σ, π1, π2 for the functions σa,b, π1,a,b, π2,a,b. Define

E′ = {〈i, j〉 ∈ [a#b]2 : π1(i) = π1(j) 6= a ∧ 〈π2(i), π2(j)〉 ∈W (π1(i))}.

For each v < a this puts the structure of W (v) ∩ [b]2 onto copy v of the
graph of b inside the graph of E′, so that M(σ(v, b), E′) = M(b,W (v)).
On the other hand σ(b, a) = a#b is not connected to anything in E′, so
M(a#b, E′) = 0. To rectify this, let E = E′ ∪ {〈σ(v, b), a#b〉 : v < u ∧
〈v, u〉 ∈ X}. 2

We can now prove the main result of this subsection.

Lemma 7.14 The class of functions with ∆#
0 -uniform circuits is closed un-

der subset-bounded recursion.

Proof Suppose that g and h are set functions with ∆#
0 -uniform circuits.

Let f be the function satisfying

f(x, z) = g({f(y, z) : y ∈ x}, x, z) ∩ h(x, z)

where for simplicity we consider only a single parameter z rather than a
tuple of parameters ~z (this does not change anything important). We are
given sets a, c and must construct a circuit computing f(x, z) on all sets x, z
embeddable in respectively a, c. Consider arbitrary input strings X,Z and
let x = M(a,X) and z = M(c, Z).

We would like to build a circuit similar to those for Lemmas 6.14 and 6.15,
in which we put together many copies of the circuits for g and h to simulate
computing f(x, z) by recursion on x. However we are given X as a string in-
put, and cannot use it as a parameter when constructing our circuit. Instead
we will model a recursion on a.

Let [t]2 = [t(a, c)]2 be the output size of the given circuit computing
h(x, z) on sets embeddable in a, c. We will build a circuit which, as it
computes, constructs for each node u ∈ [a] a [t]2-string Fu such that

M(t, Fu) = f(M(u,X), z) (1)

and hence in particular M(t, Fa) = f(x, z).
Let g′(s, x, z) = g(s, x, z)∩h(x, z) and let C = Ca,c be a circuit computing

g′ on sets s, x, z embedded in a#t, a, c. By our assumptions and Lemma 7.11,
we may assume that C is ∆#

0 -uniform and furthermore that the output of

30

C is a [t]2-string. Let Du = Da,u be the circuit from Lemma 7.12 with the
property that

M(a,Du(X)) = M(u,X)

for u ≤ a. Let Eu = Ea,t,u be the circuit from Lemma 7.13 with the property
that, for any [a]× [t]2-string W ,

M(a#t, Eu(W,X)) = {M(t,W (v)) : v < u, 〈v, u〉 ∈ X}.

Combining these, let Gu be the circuit which takes an [a] × [t]2-string W ,
an [a]2-string X and a [c]2-string Z, and outputs the [t]2-string

Gu(W,X,Z) = C(Eu(W,X), Du(X), Z).

Suppose we have found Fv satisfying (1) for all v < u. If we define

W = {〈v, i, j〉 ∈ [a]× [t]2 : v < u, 〈i, j〉 ∈ Fv}

then W (v) = Fv for all v < u, and if we let Fu = Gu(W,X,Z) we have

M(t, Fu) = M(t, C(Eu(W,X), Du(X), Z))

= g′(M(a#t, Eu(W,X)),M(a,Du(X)),M(c, Z))

= g′({M(t, Fv) : v < u, 〈v, u〉 ∈ X},M(u,X), z)

= g′({f(y, z) : y ∈M(u,X)},M(u,X), z)

= f(M(u,X), z).

We can now describe a circuit computing Fa. Its overall shape is similar
to the circuit for bisimilarity in Lemma 6.14. We start by taking a copy
of Gu for each u ∈ [a], so the size of our circuit is a#q where q is the
size of Gu (which is independent of u). We let each Gu take its inputs X
and Z from the global inputs X and Z. Its input nodes for W correspond to
triples 〈v, i, j〉 ∈ [a]×[t]2. For each such node, if v 6< u we relabel it with the
constant 0. Otherwise we wire it to the output node of Gv corresponding
to 〈i, j〉. In this way each Gu gets as input exactly the string W described
above. Hence the output of the topmost subcircuit Ga is Fa. 2

8 Consequences of small circuits

In this section we use our results about small circuits first to sharpen our
characterization of CRSF+

⊆, and then to prove some lower bounds for it.

31

Theorem 8.1 The CRSF+
⊆ functions are exactly the set functions with ∆#

0 -
uniform circuits.

Proof One direction is given by Theorem 7.1. It remains to show that
every function with ∆#

0 -uniform circuits is in CRSF+
⊆. So suppose that

f(x1, . . . , xk) is such a function. This means that there is such a family C~a of
circuits with the property that, for all a1, . . . , ak, the circuit C~a computes f
on sets embeddable in ~a, and that if C~a = 〈c, E, λ,~s, p, µ, ν〉 then c and p
are given by smash-terms in ~a, each input size si is [ai]

2, and E, λ, µ and ν

are ∆#
0 -definable from ~a.

To compute f on ~a in CRSF+
⊆ we first construct the circuit C~a. This

can be done in CRSF⊆, since by the uniformity conditions and the clo-
sure properties of CRSF⊆ there are CRSF⊆ functions computing each com-
ponent of C~a from ~a, and we can construct the usual ordered 7-tuples in
CRSF⊆. Then for each i we can trivially construct from ai the [ai]

2-string
Ei := ∈�[ai], so that M(ai, Ei) = ai. By Lemma 6.6, we can evaluate C~a on
these strings with a CRSF⊆ function; then, with a CRSF+

⊆ function, we can
output M(t, C~a(E1, . . . , Ek)), where p = t× t is the output size of C~a. 2

It follows from the proof above that any function in CRSF+
⊆ can be com-

puted using only a single Mostowski collapse at the end of the computation.

Theorem 8.2 Let f ∈ CRSF+
⊆. Then there is a function g ∈ CRSF⊆ and

a smash-term t such that f(~a) = M(t(~a), g(~a)).

Proof By Theorem 7.1, the function f has ∆#
0 -uniform circuits. We now

repeat the proof of Theorem 8.1, skipping the final step, so that g computes
C~a(E1, . . . , Ek). 2

Corollary 8.3 The CRSF+
⊆ and CRSF⊆ relations are the same. Further-

more for every f ∈ CRSF+
⊆ the function g(~a, b) := f(~a) ∩ b is in CRSF⊆.

Proof For the first part, observe that given a diagram 〈t, E〉 we can eas-
ily compute in CRSF⊆ whether M(t, E) = 0. For the second part, we
first compute a diagram 〈t, E〉 with M(t, E) = f(~a), and then compute
the bisimulation ∼ between 〈t, E〉 and the Mostowski graph of b. Then
f(~a) ∩ b = {c ∈ b : ∃u<t, 〈u, t〉 ∈ E ∧ u ∼ c}. 2

We can generalize Theorem 8.2 into a useful result about computing
codes for CRSF+

⊆ functions in CRSF⊆.

32

Lemma 8.4 Let f ∈ CRSF+
⊆. Then there is a function g ∈ CRSF⊆ and a

smash-term t such that f(~b) = M(t(~a), g(~a,~b)) whenever ~a and ~b are tuples
of sets with bi ≤ ai for all i.

Proof As before we repeat the proof of Theorem 8.1, except, rather than
choosing Ei such that M(ai, Ei) = ai we choose it so that M(ai, Ei) = bi.
This can be done by first constructing a [bi]

2-string E′i such that M(bi, E
′
i) =

bi and then using the method of Lemma 7.12. 2

Corollary 8.5 CRSF+
⊆ is closed under the replacement and union schemes.

That is, for any CRSF+
⊆ function g, there are CRSF+

⊆ functions f and u with

f(~a, c) = {g(~a, b) : b ∈ c} and u(~a, c) =
⋃
b∈c

g(~a, b).

Proof By Lemma 8.4 there is a smash term t and a CRSF⊆ function h
such that h(~a, c, b) ⊆ [t(~a, c)]2 and g(~a, b) = M(t(~a, c), h(~a, c, b)) for every
b ∈ c. We can now use the method of Section 5.3 for coding collections of
sets. Let

W =
⋃
b∈c
{b}×h(~a, c, b).

Then M(t(~a, c),W (b)) = g(~a, b) for every b ∈ c, and W is computable in
CRSF⊆ from ~a and c using separation, since W ⊆ c× [t(~a, c)]2. Replacement
follows by Lemma 5.9, and union follows immediately from replacement. 2

The course-of-values of a function f(x) on a set a (where f may possibly
have other parameters) is defined in [4] as the set {〈b, f(b)〉 : b ∈ tc(a)}. We
will use a slightly different definition, in the spirit of Section 5.3, which is
more convenient to use with subset-bounded recursion.

Definition 8.6 We define f�c(~a,−) :=
⋃
b∈c {b} × f(~a, b), so that for b ∈ c

we have f(~a, b) = f�c(~a,−)(b).
We define the course-of-values of f(~a, x) on c (with respect to the argu-

ment x) as f�tc(c)(~a,−), and will write this as f<c(~a,−).

Definition 8.7 The function f is obtained from g by subset-bounded course-
of-values recursion with bound h if

f(~a, b) = g(~a, b, f<b(~a,−)) ∩ h(~a, b).

Corollary 8.8 CRSF+
⊆ is closed under subset-bounded course-of-values re-

cursion.

33

Proof Suppose f(~a, b) = g(~a, b, f<b(~a,−)) ∩ h(~a, b) with g, h ∈ CRSF+
⊆.

Define F (~a, b) = f�[b](~a,−). Then F (~a, b) ⊆ [b]×
⋃
c≤b h(~a, c), since each

f(~a, c) ⊆ h(~a, c). By Corollary 8.5 this bound on F is in CRSF+
⊆. Hence

we may potentially define F by subset-bounded recursion. This is straight-
forward, as given S = {F (~a, c) : c ∈ b} we have that

⋃
S = f<b(~a,−), so

f(~a, b) = g(~a, b,
⋃
S) and F (~a, b) =

⋃
S ∪ ({b} × f(~a, b)). Hence F is in

CRSF+
⊆, and it follows immediately that f is as well. 2

An interesting consequence of our characterization of CRSF+
⊆ in terms

of circuits is that it allows us to use known circuit lower bounds to prove
that certain functions are not in CRSF+

⊆.

Theorem 8.9 There is no CRSF+
⊆ function f which computes the parity

of |x| for every hereditarily finite set x.

Proof Suppose f is such a function. Then by Theorem 7.1 there is a smash-
term t such that for every set a there is a circuit Ca of size t(a) computing f

on all sets embeddable in a. Choose a large n ∈ ω of the form 22k . Let
a = P(P(k)). Then rank(a) = k + 2, |a| = n and |[a]| ≤ 2n. Therefore the
underlying graph G(t(a)) of Ca has depth (that is, rank) polynomial in k and
size polynomial in n. But since Ca computes the parity of all subsets of a,
it is straightforward to build from it a circuit of depth polynomial in k and
size polynomial in n which computes the parity of all n-bit strings, which is
impossible by [8]. 2

In contrast, by the simulation of polynomial time in CRSF+
⊆ in Section 4

there is a CRSF⊆ function which can compute the parity of a hereditarily
finite set x, as long as x is a set of ordinals.

As a corollary of Theorem 8.9 we get a version of P 6= NP for CRSF+
⊆.

We first define a natural notion of NP for CRSF+
⊆.

Definition 8.10 A Σ⊆1 -CRSF+
⊆ relation is one of the form ∃y⊆t(x)ϕ(x, y),

where ϕ(x, y) is a CRSF+
⊆ relation and t is a smash term.

Corollary 8.11 The relation ϕ(x) expressing that x can be partitioned into
a collection of unordered pairs is Σ⊆1 -CRSF+

⊆, but is not equivalent to any

CRSF+
⊆ relation, even on hereditarily finite sets x.

That Σ⊆1 -CRSF+
⊆ is different from CRSF+

⊆ on {0, 1}ω already follows
from [12]. Say that a set L ⊆ {0, 1}ω is in NP if there is a set M ⊆ {0, 1}ω

34

in P (that is, decided by a polynomial time infinite-time Turing machine)
such that x ∈ L↔ ∃y∈{0, 1}ω x⊕ y ∈ M , where x⊕ y ∈ {0, 1}ω alternates
bits from x with bits from y. Then [12] shows that every set in P is Borel,
and gives an example of a set ∆ in NP which is not Borel. By Theorems 4.5
and 4.6, P coincides with CRSF+

⊆ on {0, 1}ω. It follows that ∆ is in Σ⊆1 -

CRSF+
⊆ but not in CRSF+

⊆.
As was already discussed, since the above separation is based on parity, it

has no relevance for whether the ordinary versions of P and NP are distinct.

9 Embedding-bounded recursion

We will write CRSF4 for the class of CRSF functions in the sense of [4].
The goal of this section is to show that CRSF+

⊆ and CRSF4 are the same.
We recall some definitions from [4].

Definition 9.1 A function τ is an embedding of a into b, written τ : a 4 b,
if τ : tc(a)→ P(tc(b)) and for all x, y ∈ tc(a),

1. τ(x) 6= 0

2. if x 6= y then τ(x) ∩ τ(y) = 0

3. if x ∈ y then for every v ∈ τ(y), there is some u ∈ τ(x) with u < v.

Definition 9.2 Let g(~a, b, x), h(~a, b) and τ(x,~a, b) be functions. The func-
tion f(~a, b) is obtained from g(~a, b, x) by embedding-bounded recursion with
bound h(~a, b) and embedding function τ(x,~a, b) if

f(~a, b) = g(~a, b, {f(~a, c) : c ∈ b})

and if for all ~a, b we have τ(x,~a, b) : f(~a, b) 4 h(~a, b). The last condition
means that the function x 7→ τ(x,~a, b) is an embedding f(~a, b) 4 h(~a, b).

Definition 9.3 CRSF4 is the closure of the empty set, projections, pairing,
union, cond∈ and set smash # functions under composition and embedding-
bounded recursion.

We first show that the two natural notions of embeddability coincide.

Lemma 9.4 The following are equivalent:

1. There is a set E such that a = M(b, E).

35

2. There is a function τ such that τ : a 4 b.

Proof First suppose that a = M(b, E). For x < a define τ(x) = {u < b :
x = M(u,E)}. It is straightforward to show that τ has the properties of an
embedding function. In particular, if v ∈ τ(y) and x ∈ y then x ∈ M(v,E)
so, by the definition of embedded Mostowski collapse, x = M(u,E) for
some u < v, giving u ∈ τ(x) as required.

For the other direction, suppose τ : a 4 b. We first extend the domain
of τ from tc(a) to [a] by defining τ(a) = {b}. It is easy to see that the three
properties of an embedding function still hold. Now define E as the set of
pairs 〈u, v〉 ∈ [b]2 such that

u < v ∧ ∃x, y∈[a], x ∈ y ∧ u ∈ τ(x) ∧ v ∈ τ(y).

We will prove by ∈-induction on y that, for every y ∈ [a] and v ∈ τ(y),
y = M(v,E). Since τ(a) = {b} it will follow that a = M(b, E).

Fix v ∈ τ(y). To show M(v,E) ⊆ y, let z ∈M(v,E). Then z = M(u,E)
for some u < v with 〈u, v〉 ∈ E. By the definition of E and the properties
of τ , there exists x ∈ y with u ∈ τ(x). By the inductive hypothesis, x =
M(u,E). Therefore x = z, so z ∈ y.

To show y ⊆ M(v,E), suppose x ∈ y. Since v ∈ τ(y), by the properties
of τ there is some u ∈ τ(x) with u < v. Then 〈u, v〉 ∈ E and also by the
inductive hypothesis x = M(u,E). Therefore x ∈M(v,E). 2

Theorem 9.5 CRSF+
⊆ is contained in CRSF4.

Proof It is shown in [4] that CRSF4 contains all the initial functions of
CRSF⊆ and is closed under subset-bounded recursion. That is, all CRSF⊆
functions are in CRSF4. So it is enough to show that embedded Mostowki
collapse is in CRSF4. We know from [4] that CRSF4 is closed under course-
of-values embedding-bounded recursion, which is a version of embedding-
bounded recursion in which we are allowed us to use the sequence {〈c, f(c, ~z)〉 :
c < b} of all earlier values of f when calculating f(b, ~z). We have

M(a,E) = {M(b, E) : b < a ∧ 〈b, a〉 ∈ E}.

If S = {〈b,M(b, E)〉 : b < a} is the sequence of earlier values of M then

M(a,E) = {y ∈
⋃⋃

S : ∃b<a, 〈b, y〉 ∈ S ∧ 〈b, a〉 ∈ E}

which is a CRSF4 function of S, E and a.

36

For this to be a valid instance of course-of-values embedding-bounded
recursion, we also need to provide a CRSF4 function embedding M(a,E)
into an existing CRSF4 function of a and E. By the proof of Lemma 9.4,
if b = M(a,E) and we define τ(x) = {u < a : x = M(u,E)} then τ : b 4
a. To compute τ by a CRSF4 function which does not use M , we first
compute the bisimulation ∼ between the Mostowski graph of x and 〈a,E〉
(by Lemma 5.7 we can do this in CRSF⊆, and hence in CRSF4) and then
take τ(x) = {u < a : x ∼ u}. 2

Theorem 9.6 CRSF4 is contained in CRSF+
⊆.

Proof By Theorem 21 of [4], it is enough to show that CRSF+
⊆ is closed

under 4-bounded recursion where the bounding term h is a #-term. Here a
#-term is a stricter version of our smash-term: it is built only from variables,
the constant 1, and the function symbols � and #. So suppose that g and τ
are CRSF+

⊆ functions, h is a #-term and f is a function such that for all ~a, b

f(~a, b) = g(~a, b, {f(~a, c) : c ∈ b}) and τ(x,~a, b) : f(~a, b) 4 h(~a, b).

We must show that f ∈ CRSF+
⊆.

By Lemma 9.7 below we may assume that there is a function τ ′ in CRSF+
⊆

such that, for all ~a, b, d with b ≤ d,

τ ′(x,~a, b, d) : f(~a, b) 4 h(~a, d).

We will use τ ′ rather than τ because it is convenient to have one fixed
bounding set throughout the recursion. Below we write h for h(~a, d).

We will show f ∈ CRSF+
⊆ by defining a function F (~a, b, d) in CRSF+

⊆
with the property that F (~a, b, d) = {b}×E for some [h]2-string E such that
M(h,E) = f(~a, b) whenever b ≤ d (the {b} is there to help us carry out a
kind of course-of-values recursion). We will construct F using ⊆-bounded
recursion on b — note that F (~a, b, d) ⊆ {b} × [h]2. We then obtain f(~a, b)
as M(h(~a, b), F (~a, b, b)(b)).

Consider the point in the recursion where we reach a set b ≤ d. We are
given the set s = {F (~a, c, d) : c ∈ b}. Let W =

⋃
s. By Lemma 5.9 we can

compute s′ = {M(h,W (c)) : c ∈ b}. By the properties of F , each W (c) is a
set E with M(h,E) = f(~a, c). Therefore s′ = {f(~a, c) : c ∈ b}.

We can now compute f(~a, b) as g(~a, b, s′). Since we have a CRSF+
⊆

embedding τ ′ : f(~a, b) 4 h, we can use the construction in the proof of
Lemma 9.4 to build a set E ⊆ [h]2 such that f(~a, b) = M(h,E). We put
F (~a, b, d) = {b} × E. 2

37

For the previous theorem we need to reprove, for CRSF+
⊆ functions, some

technical results from [4] which capture the idea that #-terms behave like
monotone functions with respect to embeddings.

Lemma 9.7 Let f, g, h, i be CRSF+
⊆ functions with arguments ~a, b, which we

treat as parameters. Let τ1, τ2 be CRSF+
⊆ functions with arguments x,~a, b.

1. There is a CRSF+
⊆ function τ such that if τ1 : f 4 g and τ2 : g 4 h,

then τ : f 4 h.

2. There are CRSF+
⊆ functions τ and τ ′ such that if τ1 : f 4 g and

τ2 : h 4 i, then τ : f � h 4 g � i and τ ′ : f#h 4 g#i.

3. If g is a #-term then there is a CRSF+
⊆ function τ with arguments

x,~a, b, c such that if τ1(x,~a, b) : f(~a, b) 4 g(~a, b) and b ≤ c then
τ(x,~a, b, c) : f(~a, b) 4 g(~a, c).

Proof For item 1, let τ(x) = {z ∈ [h] : ∃y∈τ1(x), z ∈ τ2(y)}. The proof
that this is an embedding function is just as in Lemma 18 of [4].

For item 2, extend τ1 and τ2 so that τ1(f) = {g} and τ2(h) = {i}. Let

τ(x) =

{
τ2(x) if x ∈ tc(h)
{y � i : y ∈ τ1(x�−1 h)} otherwise

τ ′(x) = {σg,i(y′, z′) : y′ ∈ τ1(π1,f,h(x)) ∧ z′ ∈ τ2(π2,f,h(x))},

where x �−1 h is the (unique) z such that x = z � h, or is 0 if no such z
exists. Then τ(x) ⊆ tc(g � i) and τ ′(x) ⊆ tc(g#i) so both functions can be
computed in CRSF+

⊆ using separation. The proofs that these work are as in
Lemma 19 of [4].

For item 3 it is enough, using item 1, to find a function τ ′ such that
τ ′(x,~a, b, c) : g(~a, b) 4 g(~a, c) whenever b ≤ c. This is done by induction on
the complexity of the #-term g, using items 1 and 2. 2

10 Rudimentary functions

The class Rud of rudimentary functions was introduced in [9], as the smallest
class which contains projections, pairing and set subtraction x \ y and is
closed under composition and the union operation f(~a, c) :=

⋃
b∈c g(~a, b).

We will use some properties of Rud shown in [9], namely that it contains ×,
is closed under separation, and that the Rud relations are closed under
Boolean operations and ∆0 quantification.

38

Lemma 10.1 Every Rud function is in CRSF+
⊆.

Proof The only possible issue is closure under union, but this is taken care
of by Corollary 8.5. 2

Definition 10.2 Let RS be the class of functions obtained from Rud by
adding transitive closure as a basic function, and closing under subset-
bounded recursion.

We will show that RS and CRSF+
⊆ have essentially the same complexity.

A straightforward induction shows that no function in RS increases the rank
of its arguments by more than a constant, so RS does not contain � or #
and the two classes cannot exactly coincide. But by Theorem 10.8 below,
for any CRSF+

⊆ function f we can compute in RS a string coding the value
of f via a version of embedded Mostowski collapse. In particular it follows
that the relations in RS and CRSF+

⊆ are the same.

The key idea is that constructions in CRSF+
⊆ typically use recursion over

smash-terms ordered by <, and we can simulate this in RS using recursion
over cartesian products ordered lexicographically by <.

Definition 10.3 For k ∈ N and k-tuples ~a,~b we write 〈~a〉 <k 〈~b〉 for the
usual lexicographic ordering induced by the ordering < on components. For
any set u we write <uk 〈~a〉 for the set {〈~b〉 ∈ tc(u) : 〈~b〉 <k 〈~a〉}, where 〈~b〉
ranges over k-tuples. We write 〈~b〉 <uk 〈~a〉 instead of 〈~b〉 ∈<uk 〈~a〉.

When doing course-of-values recursion we use the notation

f
<u

k〈~b〉
(~p,−) :=

⋃
〈~c〉<u

k〈~b〉

{〈~c〉}×f(~p,~c).

where the dash − indicates the last k arguments of f .

We introduce the bound u because the collection of all tuples 〈~b〉 such
that 〈~b〉 <k 〈~a〉 is typically not a set. Note that <k is well-founded on k-
tuples, in the sense that for any formula ϕ in the language of set theory, if
ϕ(~p,~a) holds for some k-tuple 〈~a〉 then there is some <k minimal k-tuple 〈~b〉
such that ϕ(~p,~b) holds.

We will use the following strengthening of course-of-values recursion to
simulate CRSF+

⊆ in RS.

Definition 10.4 For k ∈ N, the function f is obtained from g by subset-
bounded k-lexicographic recursion with bound h if

f(~p, u,~a) = g(~p, u,~a, f<u
k〈~a〉(~p, u,−)) ∩ h(~p, u,~a).

39

We call u the domain of the recursion.

Theorem 10.5 For each k ∈ N, the class RS is closed under subset-bounded
k-lexicographic recursion.

Proof We use induction on k. The case k = 1 is just the usual course-
of-values recursion as discussed in Section 8. The proof of Corollary 8.8,
that this is available in CRSF+

⊆, relies on the subset-bounded recursion and
union schemes and exactly the same proof goes through for RS.

Suppose k > 1. For clarity we will suppress the parameters ~p. We will
assume that g(u,~a, S) ⊆ h(u,~a) always, by replacing g with g∩h if necessary,
and we will write ~a2 and ~b2 instead of a2, . . . , ak and b2, . . . , bk. We have

f(u,~a) = g(u,~a, f<u
k〈~a〉(u,−))

with g, h ∈ RS. Let f ′ be defined by the (k−1)-lexicographic recursion

f ′(u,~a, S) := g(u,~a, S ∪R(u, a1, f
′
<u

k−1〈~a2〉
(u, a1,−, S)))

where R is the function

R(u, a1, Z) := {〈〈a1,~b2〉, y〉 : 〈〈~b2〉, y〉 ∈ Z and 〈a1,~b2〉 ∈ tc(u)}

whose purpose is to prepend elements of a course-of-values Z over <uk−1 〈~a2〉
with a1, and remove any which could not then be elements of a course-
of-values over <uk 〈~a〉. By the inductive hypothesis f ′ ∈ RS. Define a
function F by

F (u, a1) = f<u
k〈a1,~0〉

(u,−)

where ~0 stands for the (k−1)-tuple of empty sets.
We claim that for all ~a and u,

f ′(u,~a, F (u, a1)) = f(u,~a).

To see this, fix u and a1 and use <k−1-induction on ~a2. For the inductive
step, suppose that for all 〈~b2〉 <k−1 〈~a2〉 we have

f ′(u, a1,~b2, F (u, a1)) = f(u, a1,~b2).

By definition
f ′(u, a1,~a2, F (u, a1)) = g(u, a1,~a2, Z) (2)

40

where

Z = F (u, a1) ∪ R(u, a1, f
′
<u

k−1〈~a2〉
(u, a1,−, F (u, a1)))

= f<u
k〈a1,~0〉

(u,−) ∪R(u, a1,
⋃

〈~b2〉<u
k−1〈~a2〉

{〈~b2〉}×f ′(u, a1,~b2, F (u, a1))

= f<u
k〈a1,~0〉

(u,−) ∪
⋃

〈~b2〉<u
k−1〈~a2〉

〈a1,~b2〉∈tc(u)

{〈a1,~b2〉}×f ′(u, a1,~b2, F (u, a1))

= f<u
k〈a1,~0〉

(u,−) ∪
⋃

〈~b2〉<u
k−1〈~a2〉

〈a1,~b2〉∈tc(u)

{〈a1,~b2〉}×f(u, a1,~b2)

by the inductive hypothesis. From the definition,

<uk 〈~a〉 = {〈b1,~b2〉 ∈ tc(u) : (b1 < a1) ∨ (b1 = a1 ∧ 〈~b2〉 <k−1 〈~a2〉)}

=<uk 〈a1,~0〉 ∪ {〈a1,~b2〉 ∈ tc(u) : 〈~b2〉 <uk−1 〈~a2〉}

where we are using that 〈a1,~b2〉 ∈ tc(u) implies 〈~b2〉 ∈ tc(u). It follows
that Z = f<u

k〈~a〉(u,−). Therefore the right hand side of (2) is exactly the
recursive definition of f(u,~a), giving us the inductive step.

To finish the proof it is enough to show that F is in RS. We have

F (u, a1) = f<u
k〈a1,~0〉

(u,−) =
⋃

〈~b〉∈tc(u)
b1<a1

{〈~b〉}×f(u,~b) =
⋃

〈~b〉∈tc(u)
b1<a1

{〈~b〉}×f ′(u,~b, F (u, b1))

hence F is definable by course-of-values recursion on a1, using f ′. Further-
more since f ⊆ h we have F (u, a1) ⊆ tc(u)×

⋃
〈~b〉<u

k〈a1,~0〉
h(u,~b), and this

bound is in RS. Hence F is in RS. 2

We now generalize the notion of diagram from Definition 2.1.

Definition 10.6 For k ∈ N, a k-diagram is a pair 〈〈~a〉, E〉 where 〈~a〉 is a
k-tuple, and a pair 〈〈~x〉, 〈~y〉〉 of k-tuples is in E only if 〈~x〉 <k 〈~y〉. The
domain of a k-diagram is defined as

dom(〈〈~a〉, E〉) = {〈~a〉} ∪ {〈~x〉 : there is some pair 〈〈~x〉, 〈~y〉〉 ∈ E}.

A k-diagram represents the graph with nodes dom(〈〈~a〉, E〉) and edges
given by E.

41

Definition 10.7 For k ∈ N, the k-embedded Mostowski collapse Mk is
defined by the lexicographic recursion

Mk(〈~a〉, E) = {Mk(〈~b〉, E) : 〈〈~b〉, 〈~a〉〉 ∈ E and 〈~b〉 <k 〈~a〉}.

For convenience we will often treat Mk as a one-argument function, writ-
ing Mk(∆) to mean Mk(〈~a〉, E) for a k-diagram ∆ = 〈〈~a〉, E〉. We consider
a k-diagram ∆ as a code for the set Mk(∆). Working with codes rather
than directly with sets allows us to simulate computations involving sets of
higher rank than we could produce in RS. Note that Mk itself is not in
RS, at least for k ≥ 2, and that if we add M2 to RS it becomes possible to
construct # and thus every function in CRSF+

⊆.
We state our main result.

Theorem 10.8 If f ∈ CRSF+
⊆ then there is a function F ∈ RS and k ∈ N

such that F (~a) is a k-diagram and f(~a) = Mk(F (~a)). It follows that the
CRSF+

⊆ and RS relations are the same, and furthermore that for f ∈ CRSF+
⊆

the function g(~a, b) := f(~a) ∩ b is in RS.

This will follow from Theorem 10.10 below, together with the observation
that RS contains the function a 7→ 〈a,∈�[a]2〉 which maps a to a 1-diagram
coding a. For the last sentence we repeat the proof of Corollary 8.3, using
Lemma 10.11 to compute bisimulations in RS.

Definition 10.9 We say that a function f(x1, . . . , xm) is RS-definable on
diagrams if for all k1, . . . , km ∈ N there is an RS function F~k(x1, . . . , xm)
and ` ∈ N such that, for all ∆1, . . . ,∆m where each ∆i is a ki-diagram,
F~k(∆1, . . . ,∆m) is an `-diagram and

M`(F~k(∆1, . . . ,∆m)) = f(Mk1(∆1), . . . ,Mkm(∆m)).

A relation r(x1, . . . , xm) is RS-definable on diagrams if for all k1, . . . , km ∈
N there is an RS relation R~k(x1, . . . , xm) such that for all ki-diagrams ∆i

R~k(∆1, . . . ,∆m)⇔ r(Mk1(∆1), . . . ,Mkm(∆m)).

We show that RS can simulate CRSF+
⊆ functions in this sense.

Theorem 10.10 Every CRSF+
⊆ function is RS-definable on diagrams.

The proof of this takes up the rest of this section. The constructions
used are similar to those in Section 7.

42

Lemma 10.11 For k, ` ∈ N, there is a function Bk,`(〈~a〉, E, 〈~b〉, F) in RS
which computes the bisimulation between the k-diagram 〈〈~a〉, E〉 and the `-
diagram 〈〈~b〉, F 〉.

Proof First observe that the desired bisimulation is a subset of dom(〈~a〉, E)×
dom(〈~b〉, F). We will define Bk,` by k-lexicographic recursion on 〈~a〉 with

domain E. Suppose we are given S = (Bk,`)�<E
k 〈~a〉

(−, E, 〈~b〉, F), that is, the

course-of-values of Bk,` below 〈~a〉. Expanding the definition,

S =
⋃

〈~c〉<k〈~a〉
〈~c〉∈tc(E)

{〈~c〉} ×Bk,`(〈~c〉, E, 〈~b〉, F).

Let 〈~c〉 be any E-predecessor of 〈~a〉. Then 〈~c〉 <k 〈~a〉 and 〈~c〉 ∈ tc(E). Hence
we can extract from S the bisimulation between 〈〈~c〉, E〉 and 〈〈~b〉, F 〉 using
an RS function, as

Bk,`(〈~c〉, E, 〈~b〉, F) = {z ∈
⋃⋃

S : 〈〈~c〉, z〉 ∈ S}.

We then carry on as in the proof of Lemma 5.7. 2

Corollary 10.12 The relations = and ∈ are RS-definable on diagrams.

Lemma 10.13 The constant 0 and the functions pairing, cond∈ ×, � and
are RS-definable on diagrams.

Proof A 1-diagram for 0 is simply 〈0, 0〉. For the other functions, suppose
we are given a k-diagram Γ = 〈〈~a〉, E〉 and an `-diagram ∆ = 〈〈~b〉, F 〉.

For the pairing function we take m = 1 + k + ` and construct an
m-diagram, whose nodes we will write in the form 〈i, ~x, ~y〉 where i is a
1-tuple, ~x is a k-tuple and ~y is an `-tuple. We define an edge relation G,
using infix notation for G, by

1. 〈0, ~x,~0〉G 〈0, ~x ′,~0〉 if and only if 〈~x〉 E 〈~x ′〉
2. 〈1,~0, ~y〉G 〈1,~0, ~y ′〉 if and only if 〈~y〉 F 〈~y ′〉
3. 〈0,~a,~0〉G 〈2,~0,~0〉
4. 〈1,~0,~b〉G 〈2,~0,~0〉.

Note that G respects the ordering <m. By 1 and 2, Mm(〈0,~a,~0〉, G) =
Mk(Γ) and Mm(〈1,~0,~b〉, G) = Mk(∆). Thus by 3 and 4, Mm(〈2,~0,~0〉, G) =
{Mk(Γ),M`(∆)}. The set composition and cond∈ functions are similar (see
Lemmas 7.5 and 7.6).

For the smash function # we take m = k+ `. Using similar notation for
tuples as the previous case, we define an edge relation G on m-tuples by

43

1. 〈~x, ~y〉G 〈~x, ~y ′〉 if and only if 〈~x〉 ∈ dom(Γ) and 〈~y〉 F 〈~y ′〉
2. 〈~x,~b〉G 〈~x ′, ~y〉 if and only if 〈~x〉 E 〈~x ′〉 and 〈~y〉 is a source node of F .

We output 〈〈~a,~b〉, G〉.
For the cartesian product we take m = 3 + k + `. We define an edge

relation G by first, for each pair p ∈ dom(Γ)×dom(∆), putting

1. 〈0, p, 0, ~x,~0〉G 〈0, p, 0, ~x ′,~0〉 if and only if 〈~x〉 E 〈~x ′〉
2. 〈0, p, 1,~0, ~y〉G 〈0, p, 1,~0, ~y ′〉 if and only if 〈~y〉 F 〈~y ′〉.

For each such p, if p has the form 〈〈~x〉, 〈~y〉〉 where 〈~x〉 E 〈~a〉 and 〈~y〉 F 〈~b〉,
meaning that e〈~x〉 := Mk(〈~x〉, E) ∈ Mk(Γ) and f〈~y〉 := M`(〈~y〉, F) ∈ M`(∆),
then we add six more edges:

3. 〈0, p, 0, ~x,~0〉G 〈0, p, 2,~0,~0〉
4. 〈0, p, 0, ~x,~0〉G 〈0, p, 3,~0,~0〉 and 〈0, p, 1,~0, ~y〉G 〈0, p, 3,~0,~0〉
5. 〈0, p, 2,~0,~0〉G 〈0, p, 4,~0,~0〉 and 〈0, p, 3,~0,~0〉G 〈0, p, 4,~0,~0〉
6. 〈0, p, 4,~0,~0〉G 〈1, 0, 0,~0,~0〉.

From 1 and 3, we have Mm(〈0, p, 2,~0,~0〉, G) = {e〈~x〉}. From 1, 2 and 4,

we have Mm(〈0, p, 3,~0,~0〉, G) = {e〈~x〉, f〈~y〉}. From 5, Mm(〈0, p, 4,~0,~0〉, G) =

〈e〈~x〉, f〈~y〉〉. We output 〈〈1, 0, 0,~0,~0〉, G〉, which thus by 6 codes the whole
set Mk(Γ)×M`(∆). 2

Below we will use small Greek letters to denote tuples of sets. The arity
will be clear from the context.

Lemma 10.14 The transitive closure function is RS-definable on diagrams.

Proof Given a k-diagram ∆ = 〈α,E〉, we first claim that there is an RS
function computing the ancestor relation on the nodes of ∆.

To see this, for β ≤k α let Rβ be the ancestor relation on the graph

whose nodes are the set ≤dom(∆)
k β and whose edges are those induced on

this set by E. Then Rβ ⊆ dom(∆)× dom(∆) and can be computed by
subset-bounded k-lexicographic recursion, where the form of the recursion
is similar to the proof of Lemma 10.11, and we compute Rβ from earlier
values Rγ with 〈γ, β〉 ∈ E as in Lemma 6.15.

We output 〈α,E ∪G〉 where G consists of every pair 〈β, α〉 such that β
is an E-ancestor of α. 2

Lemma 10.15 Embedded Mostowski collapse is RS-definable on diagrams.

44

Proof We are given a k-diagram 〈α,Ga〉 and an `-diagram 〈β,GE〉. We
will construct a set H such that

Mk(〈α,H〉) = M(a,E)

where a = Mk(〈α,Ga〉) and E = M`(〈β,GE〉). As in Lemma 7.10, we define
κ(ρ) = Mk(〈ρ,Ga〉) for k-tuples ρ. We put

H = {〈ρ, σ〉 ∈ dom(〈α,Ga〉)×dom(〈α,Ga〉) :

ρ <k σ ∧ κ(ρ) < κ(σ) ∧ 〈κ(ρ), κ(σ)〉 ∈ E}.

The proof that this works is the same as for Lemma 7.10.
To construct H in RS, we first observe that κ(ρ) < κ(σ) if and only

if Mk(〈ρ,Ga〉) ∈ tc(Mk(〈σ,Ga〉)). Since membership and transitive closure
are RS-definable on diagrams, this relation is as well. To decide whether
〈κ(ρ), κ(σ)〉 ∈ E, we first construct a subcircuit computing the bisimula-
tion ∼ between 〈α,Ga〉 and 〈β,GE〉. Then 〈Mk(〈ρ,Ga〉),Mk(〈σ,Ga〉)〉 is
in E if and only if there exist `-tuples ρ′, σ′ in dom(〈β,GE〉) such that

ρ ∼ ρ′ ∧ σ ∼ σ′ ∧ 〈M`(〈ρ′, GE〉),M`(〈σ′, GE〉)〉 ∈M`(〈β,GE〉)

and this condition is decidable in RS, since membership and the pairing
function relation are RS-definable on diagrams. 2

Lemma 10.16 For k ∈ N there is an RS function Collectk such that, for
any set S of k-diagrams, Collectk(S) is a (k+1)-diagram with

Mk+1(Collectk(S)) = {Mk(∆) : ∆ ∈ S}.

Proof We write a k-diagram ∆ as 〈〈~a∆〉, E∆〉, and can recover the k-
tuple ~a∆ and the set E∆ from ∆ using RS functions. Define

F =
⋃

∆∈S
{〈〈∆, ~x〉, 〈∆, ~x ′〉〉 : 〈〈~x〉, 〈~x ′〉〉 ∈ E∆}.

That is, for each pair in E∆ we prepend ∆ to both k-tuples in the pair,
turning them into (k + 1)-tuples, and then take the union over all ∆ ∈ S.
The result is that Mk+1(〈〈∆,~a∆〉, F 〉) = Mk(∆) for each ∆ ∈ S. Then we
define

G = F ∪ {〈〈∆,~a∆〉, 〈S,~0〉〉 : ∆ ∈ S}

where ~0 is a k-tuple of empty sets. Note that the extra edges respect the
lexicographic ordering. We output 〈〈S,~0〉, G〉. 2

45

Lemma 10.17 Suppose g and h are RS-definable on diagrams. Then the
function f defined by subset-bounded recursion from g with bound h is RS-
definable on diagrams.

Proof For simplicity of presentation we will only consider a recursion with-
out parameters — this changes nothing important. So we have

f(x) = g({f(y) : y ∈ x}, x) ∩ h(x).

Suppose that our input x is given as a k-diagram. By assumption there
are `,m ∈ N and a function H ∈ RS simulating h, which takes as input a
k-diagram and outputs an `-diagram, and a function G ∈ RS simulating g,
which takes as input an (`+1)-diagram (for the previous values) and a k-
diagram (for x) and outputs an m-diagram.

Let us name the parts of a diagram, so that ∆ = 〈sink(∆),Edges(∆)〉.
We claim that there is an RS function G′ such that for all k-diagrams ∆
and (`+1)-diagrams Γ, we have that G′(Γ,∆) ⊆ Edges(H(∆)) and

M`(〈sink(H(∆)), G′(Γ,∆)〉) = g(M`+1(Γ),Mk(∆)) ∩ h(Mk(∆)). (3)

To compute G′, we first compute G(Γ,∆), H(∆) and the bisimulation ∼ be-
tween them. To deal with the intersection, we then take the set Edges(H(∆))
and delete from it every edge 〈〈~v〉, sink(H(∆))〉 for which there is no 〈~w〉 ∼ 〈~v〉
with the edge 〈〈~w〉, sink(G(Γ,∆))〉 in Edges(G(Γ,∆)). We output the result.

We can now define a function simulating f by recursively applying G′.
Below, α, β, γ stand for k-tuples. Suppose our input is 〈α,E〉. Define a
function F (β,E), by k-lexicographic recursion on β with domain E as

F (β,E) = G′(Collect`(Sβ), 〈β,E〉)
where Sβ = {〈s(γ), F (γ,E)〉 : γ <Ek β, 〈γ, β〉 ∈ E}

and we introduce the notation s(γ) for sink(H(〈γ,E〉)). Recall that the
course-of-values of F (−, E) below β on domain E is

F<E
k β

(−, E) :=
⋃
γ<E

k β

{γ}×F (γ,E),

from which we can construct Sβ in RS. Furthermore this is a subset-
bounded recursion, since by the definition of G′ we have that F (β,E) ⊆
Edges(H(〈β,E〉)). Hence F is in RS.

46

We claim that M`(〈s(β), F (β,E)〉) = f(Mk(〈β,E〉)). It follows that we
can define f on diagrams by setting β to be α. We will use k-lexicographic
induction on β. Letting ∆ = 〈β,E〉 and b = Mk(∆), we have

M`(〈s(β), F (β,E)〉) = M`(〈sink(H(∆)), G′(Collect`(Sβ),∆)〉)
= g(Ml+1(Collect`(Sβ)), b) ∩ h(b)

= g({M`(〈s(γ), F (γ,E)〉) : γ <Ek β, 〈γ, β〉 ∈ E}, b) ∩ h(b)

= g({f(Mk(〈γ,E〉)) : γ <Ek β, 〈γ, β〉 ∈ E}, b) ∩ h(b)

= g({f(c) : c ∈ b}, b) ∩ h(b)

= f(b)

using, in order, the definition of F , equation (3), the definition of Collect`,
the inductive hypothesis, and the recursive definitions of Mk and f . 2

References

[1] P. Aczel, Non-Well-Founded Sets, CSLI Lecture Notes, no. 14, Center
for the Study of Language and Information, Stanford, 1988.

[2] T. Arai, Predicatively computable functions on sets, Archive for Math-
ematical Logic, 54 (2015), pp. 471–485.

[3] A. Beckmann, S. R. Buss, and S.-D. Friedman, Safe recursive set
functions, Journal of Symbolic Logic, 80 (2015), pp. 730–762.

[4] A. Beckmann, S. R. Buss, S.-D. Friedman, M. Müller, and
N. Thapen, Cobham recursive set functions, Annals of Pure and Ap-
plied Logic, 167 (2016), pp. 335–369.

[5] , Cobham recursive set functions and weak set theories, in Sets and
Computations, Lecture Notes Series, Institute for Mathematical Sci-
ences, National University of Singapore, World Scientific, 2017, pp. 55–
116.

[6] A. Cobham, The intrinsic computational difficulty of functions, in
Logic, Methodology and Philosophy of Science, Proceedings of the Sec-
ond International Congress, held in Jerusalem, 1964, Y. Bar-Hillel, ed.,
Amsterdam, 1965, North-Holland, pp. 24–30.

[7] J. D. Hamkins and A. Lewis, Infinite time Turing machines, Journal
of Symbolic Logic, 65 (2000), pp. 567–604.

47

[8] J. Håstad, Almost optimal lower bounds for small depth circuits, in
Proceedings of the 18-th Annual ACM Symposium on Theory of Com-
puting, 1986, pp. 6–20.

[9] R. B. Jensen, The fine structure of the constructible hierarchy, Annals
of Mathematical Logic, 4 (1972), pp. 229–308. Errata, ibid 4 (1972)
443.

[10] G. E. Sacks, Higher recursion theory, Springer-Verlag, Berlin, 1990.

[11] V. Y. Sazonov, On bounded set theory, in Logic and Scientific Meth-
ods, M. L. D. C. et al., ed., Synthese Library Volume 259, Kluwer
Academic, 1997, pp. 85–103.

[12] R. Schindler, P 6= NP for infinite time Turing machines, Monat-
shefte für Mathematik, 139 (2003), pp. 335–340.

48

