Journal article 1117 views 108 downloads
Maximum principles for nonlocal parabolic Waldenfels operators
Qiao Huang,
Jinqiao Duan,
Jiang-lun Wu
Bulletin of Mathematical Sciences, Start page: 1950015
Swansea University Author: Jiang-lun Wu
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution 4.0 License (CC-BY).
Download (652.32KB)
DOI (Published version): 10.1142/S1664360719500152
Abstract
As a class of Levy type Markov generators, nonlocal Waldenfels operators appear naturally in the context of investigating stochastic dynamics under Levy fluctuations and constructing Markov processes with boundary conditions (in particular the construction with jumps). This work is devoted to prove...
Published in: | Bulletin of Mathematical Sciences |
---|---|
ISSN: | 1664-3607 1664-3615 |
Published: |
Singapore
World Scientific
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa39295 |
first_indexed |
2018-04-02T13:38:49Z |
---|---|
last_indexed |
2019-06-10T20:30:42Z |
id |
cronfa39295 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-06-10T14:16:15.5566304</datestamp><bib-version>v2</bib-version><id>39295</id><entry>2018-04-02</entry><title>Maximum principles for nonlocal parabolic Waldenfels operators</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-04-02</date><abstract>As a class of Levy type Markov generators, nonlocal Waldenfels operators appear naturally in the context of investigating stochastic dynamics under Levy fluctuations and constructing Markov processes with boundary conditions (in particular the construction with jumps). This work is devoted to prove the weak and strong maximum principles for ‘parabolic’ equations with nonlocal Waldenfels operators. Applications in stochastic differential equations with α-stable Levy processes are presented to illustrate the maximum principles.</abstract><type>Journal Article</type><journal>Bulletin of Mathematical Sciences</journal><paginationStart>1950015</paginationStart><publisher>World Scientific</publisher><placeOfPublication>Singapore</placeOfPublication><issnPrint>1664-3607</issnPrint><issnElectronic>1664-3615</issnElectronic><keywords>Nonlocal operators, weak and strong maximum principles, integro-partial differential equations, Waldenfels operators, Fokker-Planck equations, stochastic differential equations with α-stable Levy processes.</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-12-31</publishedDate><doi>10.1142/S1664360719500152</doi><url>https://www.worldscientific.com/doi/pdf/10.1142/S1664360719500152</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-06-10T14:16:15.5566304</lastEdited><Created>2018-04-02T11:44:52.8613039</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Qiao</firstname><surname>Huang</surname><order>1</order></author><author><firstname>Jinqiao</firstname><surname>Duan</surname><order>2</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><order>3</order></author></authors><documents><document><filename>0039295-07062018103452.pdf</filename><originalFilename>39295.pdf</originalFilename><uploaded>2018-06-07T10:34:52.3770000</uploaded><type>Output</type><contentLength>759519</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-06-07T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution 4.0 License (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-06-10T14:16:15.5566304 v2 39295 2018-04-02 Maximum principles for nonlocal parabolic Waldenfels operators dbd67e30d59b0f32592b15b5705af885 Jiang-lun Wu Jiang-lun Wu true false 2018-04-02 As a class of Levy type Markov generators, nonlocal Waldenfels operators appear naturally in the context of investigating stochastic dynamics under Levy fluctuations and constructing Markov processes with boundary conditions (in particular the construction with jumps). This work is devoted to prove the weak and strong maximum principles for ‘parabolic’ equations with nonlocal Waldenfels operators. Applications in stochastic differential equations with α-stable Levy processes are presented to illustrate the maximum principles. Journal Article Bulletin of Mathematical Sciences 1950015 World Scientific Singapore 1664-3607 1664-3615 Nonlocal operators, weak and strong maximum principles, integro-partial differential equations, Waldenfels operators, Fokker-Planck equations, stochastic differential equations with α-stable Levy processes. 31 12 2019 2019-12-31 10.1142/S1664360719500152 https://www.worldscientific.com/doi/pdf/10.1142/S1664360719500152 COLLEGE NANME COLLEGE CODE Swansea University 2019-06-10T14:16:15.5566304 2018-04-02T11:44:52.8613039 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Qiao Huang 1 Jinqiao Duan 2 Jiang-lun Wu 3 0039295-07062018103452.pdf 39295.pdf 2018-06-07T10:34:52.3770000 Output 759519 application/pdf Version of Record true 2018-06-07T00:00:00.0000000 Released under the terms of a Creative Commons Attribution 4.0 License (CC-BY). true eng |
title |
Maximum principles for nonlocal parabolic Waldenfels operators |
spellingShingle |
Maximum principles for nonlocal parabolic Waldenfels operators Jiang-lun Wu |
title_short |
Maximum principles for nonlocal parabolic Waldenfels operators |
title_full |
Maximum principles for nonlocal parabolic Waldenfels operators |
title_fullStr |
Maximum principles for nonlocal parabolic Waldenfels operators |
title_full_unstemmed |
Maximum principles for nonlocal parabolic Waldenfels operators |
title_sort |
Maximum principles for nonlocal parabolic Waldenfels operators |
author_id_str_mv |
dbd67e30d59b0f32592b15b5705af885 |
author_id_fullname_str_mv |
dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu |
author |
Jiang-lun Wu |
author2 |
Qiao Huang Jinqiao Duan Jiang-lun Wu |
format |
Journal article |
container_title |
Bulletin of Mathematical Sciences |
container_start_page |
1950015 |
publishDate |
2019 |
institution |
Swansea University |
issn |
1664-3607 1664-3615 |
doi_str_mv |
10.1142/S1664360719500152 |
publisher |
World Scientific |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
url |
https://www.worldscientific.com/doi/pdf/10.1142/S1664360719500152 |
document_store_str |
1 |
active_str |
0 |
description |
As a class of Levy type Markov generators, nonlocal Waldenfels operators appear naturally in the context of investigating stochastic dynamics under Levy fluctuations and constructing Markov processes with boundary conditions (in particular the construction with jumps). This work is devoted to prove the weak and strong maximum principles for ‘parabolic’ equations with nonlocal Waldenfels operators. Applications in stochastic differential equations with α-stable Levy processes are presented to illustrate the maximum principles. |
published_date |
2019-12-31T01:35:47Z |
_version_ |
1822364005757353984 |
score |
11.048453 |