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1 Introduction

The usual maximum principle concerns with second-order differential operators of
elliptic or parabolic type. It is a basic property of solutions to boundary value prob-
lems for the associated elliptic or parabolic partial differential equations (PDEs) in a
bounded domain. See [22,24]) for a general study of maximum principles. Classically,
themaximumprinciple states that themaximumof the solution of a second-order ellip-
tic or parabolic equation in a domain is to be found on the boundary of that domain.
In particular, the strong maximum principle says that if the solution achieves its max-
imum in the interior of the domain, the solution must be a constant, while the weak
maximum principle indicates that the maximum is to be found on the boundary but
may re-occur in the interior as well. Let us also mention [19] where both weak and
strong maximum principle for symmetric Markov generators are discussed via (local)
Dirichlet forms. Moreover, a maximum principle for nonlocal operators generated by
nonnegative kernels defined on topological groups acting continuously on a Hausdorff
space was considered by Coville [7]. The strong maximum principle for semicontin-
uous viscosity solution of fully nonlinear second-order parabolic integro-differential
equations was studied in [5].

A fairly large class of Markov processes on R
d are governed analytically by their

infinitesimal generators, called Lévy type generators or pseudo-differential operators
associated with negative definite symbols (cf. e.g. [11]), either via martingale problem
(cf. e.g. [14–16,28,29]) or viaDirichlet form (cf. e.g. [9,11,17,18]). From [6,11], these
operators are usually integro-differential operators or nonlocal operators, consisting
of a combination of second-order elliptic differential operators and integral operators
of Lévy type. The nonlocal operator here corresponds to the jump component of a
Markov process; in fact, it is an integral with respect to a jump measure.

The well-known Hille-Yosida theorem and the semigroup approach, which can be
found in e.g. [12], provide an intrinsic link between Markov processes and partial
differential equations, in particular second-order elliptic differential operators, as in
the pioneering work of Feller in early 1950s. The monograph [30] (also references
therein) explores the functional analytic approach to constructingMarkov processes in
a prescribed region of Rd , via the elliptic boundary value problems for the associated
Lévy-type generators.

Due to the nature of pseudo-differential operators (involving integral operators), the
Lévy-type generators are nonlocal operators. This kindof integro-differential operators
was initiated by Waldenfels [32] in 1960s. It was elucidated in [30] that a Markov
process associated with such an operator as infinitesimal operator could be interpreted
with a physical picture: A Markovian particle moves both by jumps and continuously
in a certain region of the state space Rd .

The present paper is devoted to the weak and strong maximum principles for the
following nonlocal parabolic Waldenfels operator − ∂

∂t + L:
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(
− ∂

∂t
+ L

)
u(x, t)

:= −∂u

∂t
(x, t) +

d∑
j,k=1

a jk(x, t)
∂2u

∂x j ∂xk
(x, t) +

d∑
j=1

b j (x, t)
∂u

∂x j
(x, t) + c(x, t)u(x, t)

+
∫

Rd\{0}

[
u(x + z, t) − u(x, t) −

d∑
j=1

z j
∂u

∂x j
(x, t)1{|z|<1}

]
ν(t, x, dz),

where the kernel {ν(t, x, ·) | (x, t) ∈ R
d × [0,∞)} behaves as the jump measure

for the associated Markov process. The operator L is called an elliptic Waldenfels
operator. Note that Waldenfels operators L and − ∂

∂t + L appear in the generator and
in the Fokker–Planck equation, respectively, for a stochastic differential equation with
Lévy motions [3,8,26,27]. We would like to point out that Waldenfels operators also
appear in nonlocal conservation laws [31]. Certain properties for diffusion generators
perturbed by the nonlocal Laplacian operator have also been studied recently [1,2].

We will prove the new weak and strong maximum principles for the nonlocal
parabolic operator − ∂

∂t + L , and they do not require any “nondegeneracy” conditions.
In order to cover the general case with either bounded or unbounded support of the
jump measure ν, we will introduce two open sets D and E (with D ⊂ E), where D
is the set where the maximum is achieved, and the stochastic process (“Markovian
particle”) cannot jump from D to the complement of E .

As a preparation for proving thesemaximumprinciples,wewill prove themaximum
principles for nonlocal elliptic Waldenfels operator L . These maximum principles are
important for the construction of Markov processes. In [30, Appendix C], weak and
strong maximum principles for such elliptic Waldenfels operators were proven, but
under stringent conditions, that is, the jumpmeasure has to have bounded support. The
results in [5] includes a strong maximum principle for viscosity solutions of certain
nonlinear nonlocal partial differential equations under a “nondegeneracy” condition.

The rest of this paper is organised as follows. In Sect. 2, we will present our results
on maximum principles for elliptic Waldenfels operators. As a corollary, we also
obtain the Hopf’s Lemma about the sign of the gradient on the boundary. Section 3 is
devoted to prove the maximum principles for parabolic Waldenfels operators. Some
consequences and examples are presented in Sect. 4. Finally in Sect. 5, we present the
proofs of some technical lemmas for the sake of completeness.

2 Maximum principles for elliptic Waldenfels operators

In this section, we consider the weak and strong maximum principles for the elliptic
Waldenfels operator L (decomposed into local and nonlocal components)

L := A + K , (1)
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where A and K are defined as

Au(x) :=
d∑

j,k=1

a jk(x)
∂2u

∂x j∂xk
(x) +

d∑
j=1

b j (x)
∂u

∂x j
(x) + c(x)u(x),

Ku(x) :=
∫

Rd\{0}

[
u(x + z) − u(x) −

d∑
j=1

z j
∂u

∂x j
(x)1{|z|<1}

]
ν(x, dz).

Note that the coefficients are taken to be independent of time t . Note that the operator
K is actually the nonlocal Laplacian operator −(−�)

α
2 , when the jump measure ν is

the α-stable type; see [8, Ch. 7].
The elliptic Waldenfels operator L plays an important role [30] in the theory of

Markov processes constructed in a given domain of Rd . In that context, the second-
order differential operator describes the diffusion part of the associatedMarkovprocess
and the integral operator of Lévy type corresponds to the jump behavior of theMarkov
process. Finally, there is an assumption in that contextwhich indicates that aMarkovian
particle cannot move by jumps from any interior point of certain domain to the outside
of closure of the domain. For further remarks and discussions, we refer e.g. to Bony
et al. [4] and Taira [30].

To cover more general situations, we introduce two open sets D and E in Rd , with
D ⊂ E and E not necessarily bounded. As usual, we denote the boundary of D by
∂D, its closure by D := D ∪ ∂D and its complement by Dc := R

d \ D.
We make following assumptions:

1. Continuity condition: a jk, b j , c ∈ C(E) ( j, k = 1, . . . , d).

2. Symmetry condition: a jk = akj ( j, k = 1, . . . , d). Uniform ellipticity condition:
there exists a constant γ > 0 such that

d∑
j,k=1

a jk(x)ξ jξk ≥ γ |ξ |2, (2)

for all x ∈ D, ξ ∈ R
d .

3. Lévy measures: The kernel {ν(x, ·) | x ∈ R
d} is a family of Lévy measures,

namely, each ν(x, ·) is a Borel measure on R
d \ {0} such that

sup
x∈Rd

∫

Rd\{0}
(1 ∧ |z|2)ν(x, dz) < ∞, (3)

and moreover, for fixed U ∈ B(Rd \ {0}), the mapping R
d � x → ν(x,U ) ∈

[0,∞) is Borel measurable. Here we further assume that for each x ∈ D the
measure ν(x, ·) is supported in E − x := {y − x | y ∈ E} = {z | x + z ∈ E}, i.e.,

supp ν(x, ·) ⊂ E − x, ∀x ∈ D. (4)
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Remark 2.1 The support condition (4) means in probability sense that a Markovian
particle cannot move by jumps from a point x ∈ D to the outside of E . The motiva-
tion for this condition is that the maximizer point will propagate between connected
components of the set in which the subsolution achieves maximum. The details will
be discussed again in Remark 2.9 below. When the set E is the whole space R

d ,
E − x is still the whole space, and then there are actually no extra restrictions on
the support of each measure ν(x, ·). In the case that E = D, the support condition is
supp ν(x, ·) ⊂ D − x , and this is related to the assumption in [30] that a Markovian
particle cannot move by jumps from a point x ∈ D to the outside of D.

For convenience, the notation a = (a jk) j,k=1,...,d means a is a matrix with ( j, k)-
th entry a jk , and b = (b1, . . . , bd)T is regarded as a row vector. We also recall the

gradient operator (for space variable)∇x = (
∂

∂x1
, . . . , ∂

∂xd

)T and the Hessian operator

∇2
x = ∇x ⊗∇x = (

∂2

∂x j ∂xk

)
j,k=1,...,d , where⊗means the tensor product. The variables

or subscripts will be omitted when there is no ambiguity. Then we can rewrite the
operator L as

Lu = Au + Ku

= tr[aT (∇2u)] + bT∇u + cu

+
∫

Rd\{0}
[
u(· + z) − u − zT∇u · 1{|z|<1}

]
ν(·, dz),

(5)

where “tr” denote the trace of a matrix. Both xT y and x · y, for two vectors x, y ∈ R
d ,

denote the scalar product. Moreover, we denote the positive and negative part of
function u by u+ := u ∨ 0 and u− := −(u ∧ 0) = (−u) ∨ 0, respectively. Then
u = u+ − u− and |u| = u+ + u−.

In this section, L is the elliptic Waldenfels operator as defined in (1).

2.1 Weak maximum principle for elliptic case

We now prove the weak maximum principle.

Theorem 2.2 (Weak maximum principle for elliptic Waldenfels operators) Let D be
an open and bounded set but not necessarily connected, and E be an open set satisfying
D ⊂ E. Assume that u ∈ C2(D) ∩ C(E), Lu ≥ 0 in D, and supp ν(x, ·) ⊂ E − x
for each x ∈ D.

1. If c ≡ 0 in D, then

sup
E

u = sup
E\D

u.

2. If c ≤ 0 in D, then
sup
E

u ≤ sup
E\D

u+.
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Here the supremum may be infinity.

Proof Assertion 1. We first consider the case with the strict inequality

Lu > 0 in D. (6)

Suppose that on the contrary supE u > supE\D u. Then there exists a point x0 ∈ D

with u(x0) = supE u, and

u(x0) = max
D

u.

Thus at the maximizer point x0, we have

∇u(x0) = 0, (7)

∇2u(x0) ≤ 0, (8)

where the last inequality means that the symmetric matrix ∇2u(x0) is nonpositive
definite. In particular, ∂2u

∂x2j
(x0) ≤ 0, j = 1, . . . , d. Since the matrix a = (a jk) is

symmetric and positive definite at x0, there exists an orthogonal matrix P such that

P[a(x0)]PT = diag(λ1, . . . , λd),

where “diag” means the diagonal matrix with diagonal entries λ j > 0, j = 1, . . . , d,
which are eigenvalues of a(x0). Then by changing variables y − x0 = P(x − x0), we
have

∇xu = PT (∇yu),

∇2
x u = PT (∇2

yu)P.

In light of (8), we find that at point x0,

tr[aT (∇2
x u)] = tr[aT PT (∇2

yu)P] = tr[PaT PT (∇2
yu)]

= tr[(PaPT )T (∇2
yu)] =

∑
j

λ j
∂2u

∂y2j
≤ 0.

(9)

Thus, combining (7), (9) and the assumption c ≡ 0, together with the fact that u attains
a maximum at x0, we obtain that at x0,

Au = tr[aT (∇2u)] + bT∇u + cu ≤ 0,

Ku(x0) =
∫

Rd\{0}
[
u(x0 + z) − u(x0) − zT∇u(x0) · 1{|z|<1}

]
ν(x0, dz)

=
∫

E−x

[
u(x0 + z) − u(x0)

]
ν(x0, dz)

≤ 0.
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Hence
Lu = Au + Ku ≤ 0 at x0. (10)

Therefore, we get a contradiction in light of (6) and (10), which leads to supE u =
supE\D u.

For the general case that Lu ≥ 0, we introduce a function

uε(x) := u(x) + εe−βx1 , x ∈ E, (11)

where β > 0 will be selected below and ε is a positive parameter. Note that a11 ≥
γ > 0, by substituting z = e1 = (1, 0, . . . , 0) into condition (2). Then by Taylor
expansion and the moment condition (3) of kernel ν, we have

Luε = Lu + εL(e−βx1)

≥ εe−βx1
[
β2a11 − βb1 +

∫

|z|≥1

(
e−βz1 − 1

)
ν(x, dz)

+
∫

0<|z|<1

(
e−βz1 − 1 + βz1

)
ν(x, dz)

]

≥ εe−βx1
[
β2a11 − βb1 −

∫

|z|≥1
ν(x, dz) + 1

2
β2

∫

0<|z|<1
z21e

−βθ z1ν(x, dz)
]

≥ εe−βx1
[
β2a11 − βb1 −

∫

|z|≥1
ν(x, dz) + 1

2
β2e−βθ

∫

0<|z|<1
z21ν(x, dz)

]

> 0,

provided β > 0 is large enough, where θ is a constant with 0 < θ < 1.
Then by the previous conclusion, supE uε = supE\D uε . Let ε → 0 to find

supE u = supE\D u by the continuity. This proves Assertion 1.
Assertion 2. If u ≤ 0 everywhere in D, the second assertion is trivially true. Hence

we set D+ := {x ∈ D | u(x) > 0} �= ∅. Then

(L − c)u ≥ −cu ≥ 0 in D+.

The new operator L−c has no zeroth-order term and consequently Assertion 1 implies
that

sup
E

u = sup
E\D+

u = (
sup
E\D

u
) ∨ (

sup
D\D+

u
) = (

sup
E\D

u
) ∨ 0 = sup

E\D
u+.

This completes the proof. ��

Remark 2.3 From the proof of Assertion 2 in Theorem 2.2, we have the following
conclusions.

1. In Assertion 1, if Lu > 0 in D, then u can either achieve its (finite) maximum
only on E \ D or be unbounded on E .
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2. In Assertion 2, essentially the following equality holds according to the proof,

sup
E

u+ = sup
E\D

u+,

even though the Assertion 1 in Theorem 2.2 cannot be applied directly to u+ as
it is not in C2(D). Especially if u can take positive values in D, or equivalently,
D+ �= ∅, then we have

sup
E

u = sup
E\D

u+.

Remark 2.4 The proof of Theorem 2.2 still works if the matrix a = (a jk) is only
positive semidefinite. Indeed, since the eigenvalues of a(x0) are nonnegative (λ j ≥
0, j = 1, . . . , d), the inequality (9) still holds.

Remark 2.5 As in Remark 2.1, there are two special cases for Theorem 2.2, that is,
E = R

d or E = D. Using the latter as an example, namely, u ∈ C2(D) ∩ C(D),
Lu ≥ 0 in D, and supp ν(x, ·) ⊂ D−x for each x ∈ D, where D is open and bounded
but not necessarily connected, then the following conclusions holds:

1. If c ≡ 0 in D, then

max
D

u = max
∂D

u.

2. If c ≤ 0 in D, then
max
D

u ≤ max
∂D

u+.

Corollary 2.6 Let D be an open and bounded set but not necessarily connected,
and E be an open set satisfying D ⊂ E. Assume that u ∈ C2(D) ∩ C(E), and
supp ν(x, ·) ⊂ E − x for each x ∈ D.

1. If c ≡ 0 and Lu ≤ 0 both hold in D, then

inf
E

u = inf
E\D

u.

2. If c ≤ 0 and Lu ≤ 0 both hold in D, then

inf
E

u ≥ − sup
E\D

u−.

3. If c ≤ 0 and Lu = 0 both hold in D, then

sup
E

|u| = sup
E\D

|u|.

In all the three expressions, the supremum and infimum may be infinity.
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Proof 1. Apply directly the first assertion of Theorem 2.2 to −u.
2. Apply the second assertion of Theorem 2.2 to −u.
3. Applying Statement 2 in Remark 2.3 to −u, we have

sup
E

u− = sup
E\D

u−.

Then it follows that

sup
E

|u| = (
sup
E

u+) ∨ (
sup
E

u−) = (
sup
E\D

u+) ∨ (
sup
E\D

u−) = sup
E\D

|u|.

This completes the proof. ��
Going one step further, we suppose E is bounded and then apply Corollary 2.6 to

u − v, yielding the following corollary which is often used in applications.

Corollary 2.7 Let D be an open and bounded set but not necessarily connected, and
E be an open set satisfying D ⊂ E. Assume that u, v ∈ C2(D) ∩ C(E), c ≤ 0 in D,
and supp ν(x, ·) ⊂ E − x for each x ∈ D.

1. (Comparison Principle) If Lu ≤ Lv in D and u ≥ v on E \ D, then u ≥ v in E.
2. (Uniqueness) If Lu = Lv in D and u = v on E \ D, then u = v in E.

Proof The two results immediately follow by using the last two assertions of Corollary
2.6 for u − v. ��

2.2 Strong maximum principle for elliptic case

This section is devoted to the strong maximum principle for the elliptic Waldenfels
operator L .

Theorem 2.8 (Strong maximum principle for elliptic Waldenfels operator) Let D be
an open and connected set but not necessarily bounded, and E be an open set satisfying
D ⊂ E. Assume that u ∈ C2(D) ∩ C(E), Lu ≥ 0 in D, and supp ν(x, ·) ⊂ E − x
for each x ∈ D. Moreover, assume that the mapping x → ν(x, ·) is continuous in D.
If one of the following conditions holds:

1. c ≡ 0 in D and u achieves a (finite) maximum over E at an interior point in D;
2. c ≤ 0 in D and u achieves a (finite) nonnegative maximum over E at an interior

point in D;
3. u achieves a zero maximum over E at an interior point in D,

then u is constant on D.

Before proving this theorem, let us first give some comments on it.
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Remark 2.9 The propagation of maximizer point by translation of measure support
mentioned in [5,7] is similar in our case. That is, if the assumptions in Theorem 2.8
hold, then u is a constant on the set

⋃∞
n=0 Λn , where Λn’s are defined by induction,

Λ0 = x0,Λn+1 =
⋃

x∈D∩Λn

[ supp ν(x, ·) + x].

This result depends on the support of every measure ν(x, ·), it can be easily proved
by induction and continuity. It is noteworthy that in this scheme, the set D may not be
connected, since jumps from one connected component to another might occur when
measure supports overlap two or more connected components.

In conclusion, it is the integro-differential term, or jump diffusion term that leads to
the propagation of maximizer point between those connected components. Therefore,
we need to restrict that the Markovian point can move by jumps only inside the set E ,
i.e., the support condition (4), to obtain the propagation of maximizer (over E) point.

Remark 2.10 As shown in Remark 2.1, our results on the weak and strong maximum
principles formulated in Theorem 2.2 and 2.8, respectively, cover the situations when
the support of jump measure is either bounded or unbounded, especially for E = D
or E = R

d in the setting. While Taira [30] only considered the situation for E =
D. Furthermore, our assumptions are less restrictive than Taira’s: In our work, the
connectedness is not needed for theweakmaximumprinciplewhile the boundedness is
not necessary for the strong maximum principle. Moreover, the continuity of mapping
x → ν(x, ·) is necessary only in the strong case but not for the weak maximum
principle.

Like the weak case, by applying directly Theorem 2.8 to −u, one can conclude the
strong maximum principle for the converse case Lu ≤ 0.

Corollary 2.11 Let D be an open and connected set but not necessarily bounded, and
E be an open set satisfying D ⊂ E. Assume that u ∈ C2(D) ∩ C(E), Lu ≤ 0 in
D, and supp ν(x, ·) ⊂ E − x for each x ∈ D. Moreover, assume that the mapping
x → ν(x, ·) is continuous in D. If one of the following conditions holds:

1. c ≡ 0 in D and u achieves a (finite) minimum over E at an interior point in D;
2. c ≤ 0 in D and u achieves a (finite) nonnegative minimum over E at an interior

point in D;
3. u achieves a zero minimum over E at an interior point in D,

then u is constant on D.

Now we start to prove Theorem 2.8.

Proof of Theorem 2.8 Suppose that u �≡ maxE u in D. Set D< := {x ∈ D | u(x) <

maxE u} �= ∅. Since D is connected which implies ∂D< ∩ D �= ∅, we can always
choose a point x1 ∈ D< such that dist(x1, ∂D< ∩ D) < dist(x1, ∂D). Denote by B
the largest ball having x1 as center with B ⊂ D<. Then B ⊂ D and there exists some
point x0 ∈ ∂B with

u(x0) = max
E

u > u(x), ∀x ∈ B.
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Since u achieves its maximum at x0 ∈ D, we have ∇u(x0) = 0. We will create a
contradiction by proving that

∂u

∂n
(x0) > 0, (12)

where n is the unit outer normal vector of B at x0. Then by this contradiction, u must
be constant within D, and the result follows by continuity. Now the rest of the proof
is devoted to (12). We divide it into three steps.

Step 1 The closed set B is a d-dimension C2-differential manifold with boundary.
Let (U,
) be a coordinate chart near x0, where U is a relatively open neighborhood
of x0 in B, 
 is a C2-diffeomorphism to its image from U into the closed upper half
plane Hd+ := {y ∈ R

d | yd ≥ 0}, with inverse 
−1. Then 
 is an embedding whose
rank at x0 equals to d, equivalently, if we denote by J
 the Jacobian matrix of 
,
i.e., J
 := ∇x
, then J
 is non-degenerate. As a result, the tangent mapping 
∗
induced by 
 at point x0 is an isomorphism.

Nowwe consider the function u restricted inU .We define û(y) := u(
−1(y)), y ∈

(U ). Then û attains its maximum at y0 = 
(x0) over 
(U ) ⊂ H

d+. Hence at the
maximizer point y0,

∂ û

∂y j
= 0, j = 1, . . . , d − 1. (13)

We also denote the image tangent vector of ∂
∂n under tangent mapping 
∗ by

∂

∂n̂
:= 
∗

( ∂

∂n

)
.

We compute at y0 (or x0)

∂ û

∂n̂
=

〈

∗

( ∂

∂n

)
, dû

〉
=

〈
∂

∂n
,
∗(dû)

〉

=
〈

∂

∂n
, d(û ◦ 
)

〉
=

〈
∂

∂n
, du

〉
= ∂u

∂n
= 0,

(14)

where
∗ is denoted as the cotangentmapping induced by
 at point x0, 〈·, ·〉 is the dual
product between the tangent space and cotangent space at y0 (or x0).Now recall that
∗
is an isomorphism. The tangent vector ∂

∂n̂ is independent of { ∂
∂y j

| j = 1, . . . , d − 1}
and consequently by (14),

∂ û

∂yd
(y0) = 0. (15)

Combining (13) and (15) together with the fact that û attains its maximum at y0, we
have

∇2
y û(y0) ≤ 0. (16)
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Combining (13), (15) and (16), we have at x0,

∇xu = (J
)T (∇y û) = 0,

∇2
x u = (J
)T (∇2

y û)(J
) + (∇2
x
)(∇y û) = (J
)T (∇2

y û)(J
),

where we treat ∇2
x
 as a third-order covariant tensor. Hence at x0,

Au = tr[aT (∇2
x u)] + bT∇xu + cu

= tr[aT (J
)T (∇2
y û)(J
)] + cu

= tr[(J
)aT (J
)T (∇2
y û)] + cu

= tr
[(

(J
)a(J
)T
)T

(∇2
y û)

] + cu

=: tr[âT (∇2
y û)] + cu,

(17)

where â := (J
)a(J
)T . Since a(x) is symmetric and positive definite and thematrix
J
 is non-degenerate, we see the matrix â(x0) is also symmetric and positive definite.
Hence, as explained in the proof of Theorem 2.2 and by (16), we have

tr
[
â(x0)T

(∇2
y û(y0)

)] ≤ 0. (18)

Define

E0 := {
x ∈ E | u(x) = max

E
u
} = {

x ∈ E \ B | u(x) = max
E

u
}
. (19)

Recall that u attains its maximum over E at x0. Now we have

Ku(x0) =
∫

Rd\{0}
[
u(x0 + z) − u(x0) − zT∇u(x0) · 1{|z|<1}

]
ν(x0, dz)

=
∫

E
[u(x0 + z) − u(x0)]ν(x0, dz)

=
∫

x0+z∈E\E0

[u(x0 + z) − u(x0)]ν(x0, dz)

≤ 0.

(20)

From (17), (18) and (20), we obtain

Lu(x0) = Ku(x0) + Au(x0) ≤ c(x0)u(x0) ≤ 0.

By recalling the assumption on u, we have Lu(x) ≥ 0 for each x ∈ D, and thus

Lu(x0) = Au(x0) = Ku(x0) = 0,
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Fig. 1 Sketch for Theorem 2.8

especially,

Ku(x0) =
∫

x0+z∈E\E0

[u(x0 + z) − u(x0)]ν(x0, dz) = 0.

Hence, we conclude
ν(x0, (E \ E0) − x0) = 0. (21)

Step 2 We set B = B(x1, R) with R = |x0 − x1|. See Fig. 1. Define

v(x) := e−β|x−x1|2 − e−βR2
, x ∈ E,

for β > 0 as selected below. Then

Av = e−β|x−x1|2{tr[aT (
4β2(x − x1) ⊗ (x − x1) − 2β I

)]

− 2βbT (x − x1) + c
(
1 − e−β(R2−|x−x1|2))}

= e−β|x−x1|2[4β2(x − x1)T aT (x − x1) − 2βtr(a)

− 2βbT (x − x1) + c
(
1 − e−β(R2−|x−x1|2))]

≥ e−β|x−x1|2[4γβ2|x − x1|2 − 2βtr(a) − 2β|b||x − x1|
+ c

(
1 − e−β(R2−|x−x1|2))].

(22)

Consider next the open set D0 := B(x1, R)∩B(x0, r) (seeFig. 1)with some r ∈ (0, R)

which will be chosen later. When β is large enough, we have

Av ≥ e−βR2[
4γβ2(R − r)2 − 2βtr(a) − 2β|b|R]

> C1β
2 − C2β, (23)

for x ∈ D0, where C1,C2 are two positive constants.
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Moreover, by recalling (21), we have

Kv(x0) =
∫

Rd\{0}
[
e−β|x0−x1+z|2 − e−βR2

+ 2βzT (x0 − x1)e−βR2
1{|z|<1}

]
ν(x0, dz)

=
∫
x0+z∈E0|z|≥1

[
e−β|x0−x1+z|2 − e−βR2]

ν(x0, dz)

+
∫
x0+z∈E0
0<|z|<1

[
e−β|x0−x1+z|2 − e−βR2

+ 2βzT (x0 − x1)e−βR2]
ν(x0, dz)

=: I + I I.

(24)

For the term I , it is clear that E0 ∩ B = {x0} and consequently

|x0 + z − x1| > |x0 − x1| = R

for point z satisfying x0 + z ∈ E \ E0. Thus for sufficiently large β, we have

−C3 < e−β|x0−x1+z|2 − e−βR2
< 0

with a constant C3 > 0. Hence,

I > −C3

∫
x0+z∈E0|z|≥1

ν(x0, dz) � −C3. (25)

For the term I I , using the Taylor expansion, and for x0 + z ∈ E0 and β large
enough,

e−β|x0−x1+z|2 − e−βR2 + 2βzT (x0 − x1)e−βR2

= 1

2

[
4β2e−β|x0−x1+θ z|2 |zT (x0 − x1 + θ z)|2 − 2βe−β|x0−x1+θ z|2 |z|2]

≥ −βe−β|x0−x1+θ z|2 |z|2
≥ −C4β|z|2,

with some θ ∈ (0, 1) and a constant C4 > 0. Hence,

I I > −C4β

∫
x0+z∈E0
0<|z|<1

|z|2ν(x, dz) � −C4β. (26)
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Thus, combining the results of (23), (24), (25) and (26), we find that

Lv(x0) = Av(x0) + Kv(x0) = Av(x0) + I + I I

� C1β
2 − (C2 + C4)β − C3

> 0,

provided β > 0 is fixed large enough. Since Lv(x) is continuous in x ∈ D in light of
the continuity of ν(x, ·), we have

Lv(x) ≥ 0, (27)

for x ∈ D0, provided r is small enough.
Step 3 Define

uε(x) = u(x) + εv(x) − u(x0), x ∈ E,

for a constant ε > 0. We can choose ε so small that

uε(x) ≤ 0, x ∈ E \ D0,

since v(x) ≤ 0 for x ∈ E \ B, and u(x) < u(x0) for x ∈ B \ D0 by recalling
u(x0) > u(x) for all x ∈ D<.

For the first two cases, c ≡ 0 in D, or c ≤ 0 in D also u(x0) ≥ 0, from (27) and
the fact that Lu ≥ 0 in D, we see that

Luε ≥ −cu(x0) ≥ 0 in D0.

In view of the weak maximum principle of elliptic Waldenfels operator, Theorem 2.2,
we know that uε ≤ 0 in E . Note that uε(x0) = 0. Thus we have,

0 = ∂uε

∂n
(x0) = ∂u

∂n
(x0) + ε

∂v

∂n
(x0).

Consequently,

∂u

∂n
(x0) = −ε

∂v

∂n
(x0) = −ε∇v(x0) · (x0 − x1)

R
= 2εβRe−βR2

> 0,

as required.
For the third case that u(x0) = 0, obviously u ≤ 0 in D. We find

(L − c+)u = Lu − c+u ≥ Lu ≥ 0 in D.

Notice that the zeroth-order coefficient of operator L − c+ is c − c+, which is non-
positive in D. Hence we apply the result of the second case by replacing L and c
respectively with L − c+ and c − c+ to get the same result for this case.

We have thus completed the proof. ��
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Some comments will be helpful for understanding the long proof of Theorem 2.8.

Remark 2.12 In Theorem 2.8, we restrict the set D to be connected to ensure ∂D< ∩
D �= ∅. More generally, if D is not connected, one may merely replace D with the
connected component of D which contains the maximizer point, and we thus conclude
that u is constant in this connected component.

Recalling Remark 2.13, we could see that the diffusion term gives rise to the prop-
agation of maximizer point in the corresponding connected component. This is why
we need the set D to be connected.

Remark 2.13 We can see from (23), (25) and (26) that, it is the second-order differ-
ential term tr[aT (∇2)], namely, the diffusion term that plays a leading role in Step 2
in the proof of Theorem 2.8.

Remark 2.14 Theorem 2.8 still holds if the matrix a(x) = (a jk(x)) j,k=1,...,d is only
positive semidefinite and the unit outer normal vector n is not in the nullspace of a(x0).

In fact, recall that â = (J
)a(J
)T is also semidefinite as the Jacobian matrix J


is invertible. Due to the reason mentioned in Remark 2.4, we confirm that (18) still
holds. Moreover, noting that there exists a positive constant γ such that nT a(x0)n ≥
γ > 0 with n not in the nullspace of a(x0), and consequently (x0 − x1)T a(x0)(x0 −
x1) ≥ γ |x0 − x1|2. By continuity we can choose r so small that for all x ∈ D0 =
B(x1, R) ∩ B(x0, r),

(x − x1)T a(x)(x − x1) ≥ γ1|x − x1|2,

with a positive constant γ1. Hence (22) holds with γ1 in placing of γ and (23) also
holds for some other constants C1,C2.

By a similar way to prove (12), we can easily obtain the following version of Hopf’s
boundary point lemma, which is a generalization of [30, Lemma C.3].

Proposition 2.15 (Hopf’s boundary point lemma for elliptic Waldenfels operators)
Let D be an open set (not necessarily bounded or connected) with boundary ∂D being
C2. Assume that u ∈ C2(D), Lu ≥ 0 in D, and supp ν(x, ·) ⊂ D − x for each
x ∈ D, and furthermore the mapping x → ν(x, ·) is continuous in D. Suppose that
u achieves its (finite) maximum over D at point x0 ∈ ∂D such that u(x0) > u(x) for
all x ∈ D, and that one of the following conditions holds:

1. c ≡ 0 in D;
2. c ≤ 0 in D and u(x0) ≥ 0;
3. u(x0) = 0.

Then the outer normal derivative is positive: ∂u
∂n (x0) > 0.

In fact, if we let E = D and replace B by D in Step 1 in the proof of Theorem
2.8, also replace D< by D in Step 3, then the three-step argument also works in the
context of Proposition 2.15 and the result follows.
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3 Maximum principles for parabolic Waldenfels operators

We assume that D, E are two open sets in Rd and D ⊂ E , where E is not necessarily
bounded. Set DT := D × (0, T ] and ET := E × (0, T ] for arbitrarily fixed T > 0.

As in [14–16,28,29], we define a time dependent elliptic Waldenfels operator

L := A + K , (28)

where A and K are defined as, respectively

Au(x, t) :=
d∑

j,k=1

a jk(x, t)
∂2u

∂x j∂xk
(x, t) +

d∑
j=1

b j (x, t)
∂u

∂x j
(x, t) + c(x, t)u(x, t),

Ku(x, t) :=
∫

Rd\{0}

[
u(x + z, t) − u(x, t) −

d∑
j=1

z j
∂u

∂x j
(x, t)1{|z|<1}

]
ν(t, x, dz).

We make the following assumptions:

1. Continuity condition: a jk, b j , c ∈ C(ET ) ( j, k = 1, . . . , d).

2. Symmetry condition: a jk = akj ( j, k = 1, . . . , d). Uniform ellipticity condition:
There exists a constant γ > 0 such that

d∑
j,k=1

a jk(x, t)ξ jξk ≥ γ |ξ |2,

for all (x, t) ∈ DT , ξ ∈ R
d .

3. Lévy measures: The kernel {ν(t, x, ·) | (x, t) ∈ R
d × [0, T ]} is a family of Lévy

measures, namely, each ν(t, x, ·) is a Borel measure on R
d \ {0} such that for all

(x, t) ∈ R
d × [0, T ],

∫

Rd\{0}
(1 ∧ |z|2)ν(t, x, dz) < ∞, (29)

and moreover, for fixed U ∈ B(Rd \ {0}), the mapping R
d × [0, T ] � (x, t) →

ν(t, x,U ) ∈ [0,∞) is Borel measurable. Here we further assume that for each
(x, t) ∈ DT , the measure ν(t, x, ·) is supported in E − x := {y − x | y ∈ E} =
{z | x + z ∈ E}. That is,

supp ν(t, x, ·) ⊂ E − x, ∀(x, t) ∈ DT . (30)

The Markov process associated with such a generator L can be determined as
a solution to the martingale problem induced by L (see, e.g., [29]). However, it is
not clear if the Markov process determined by the martingale problem is linked to a
stochastic differential equation with certain boundary conditions.
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Now we consider the parabolic Waldenfels operator

− ∂

∂t
+ L ,

with L being defined in (28), and we are concerned with the maximum principles for
such a parabolic operator.

3.1 Weak maximum principle for parabolic case

We are in the position to present both weak and strong maximum principles for
parabolic Waldenfels operator − ∂

∂t + L . First we prove the weak one.

Theorem 3.1 (Weak maximum principle for parabolic Waldenfels operators) Let D
be an open and bounded set but not necessarily connected, and E be an open set
satisfying D ⊂ E. Assume that u ∈ C2,1(DT ) ∩ C(ET ), − ∂u

∂t + Lu ≥ 0 in DT , and
supp ν(t, x, ·) ⊂ E − x for each (x, t) ∈ DT .

1. If c ≡ 0 in DT , then

sup
ET

u = sup
ET \DT

u.

2. If c ≤ 0 in DT , then

sup
ET

u ≤ sup
ET \DT

u+.

Here the supremum may be infinity.

Proof Assertion 1. We prove this by contradiction. Suppose that the strict inequality
holds, i.e.,

− ∂u

∂t
+ Lu > 0 in DT , (31)

but there exists a point (x0, t0) ∈ DT such that

u(x0, t0) = max
ET

u.

On one hand, as explained in the proof of Theorem 2.2, we note that Lu ≤ 0 at point
(x0, t0). On the other hand, if 0 < t0 < T , then (x0, t0) ∈ (DT )◦ and consequently

∂u

∂t
= 0 at (x0, t0);

if t0 = T , then (x0, t0) ∈ ∂(DT ) and consequently

∂u

∂t
≥ 0 at (x0, t0).
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Thus we always have − ∂u
∂t + Lu ≤ 0 at point (x0, t0), a contradiction to (31).

In the general case that − ∂u
∂t + Lu ≥ 0 holds in DT , define

uε(x, t) := u(x, t) − εt in ET , (32)

with a positive parameter ε. Then

−∂uε

∂t
+ Luε = −∂u

∂t
+ Lu + ε > 0,

and hence supET
uε = supET \DT

uε . Now Assertion 1 follows by setting ε → 0.
Assertion 2. If u is nonpositive throughout D, Assertion 2 is trivially true. Hence we

may assume on the contrary that u achieves a positive maximum at a point (x0, t0) ∈
DT over ET .

We first consider the case with strict inequality − ∂u
∂t + Lu > 0 in DT . Since

u(x0, t0) > 0 and c ≤ 0, we derive the contradiction to Assertion 1,

−∂u

∂t
+ Lu ≤ 0 at (x0, t0).

More generally, if− ∂u
∂t + Lu ≥ 0 in DT , then set as before uε(x, t) := u(x, t)−εt

with ε > 0, which leads to

−∂uε

∂t
+ Luε = −∂u

∂t
+ Lu + ε − c · εt ≥ ε − c · εt > 0.

Moreover, if u achieves a positive maximum at a point (x0, t0) ∈ DT over ET , then
by the continuity, uε also achieves a positive maximum at a point (x0, t0) ∈ DT over
ET , provided that ε is small enough. However, as in the previous proof, we obtain a
contradiction.

This completes the proof. ��
Remark 3.2 As in the first statement of Remark 2.3, we also conclude that in Assertion
1 of Theorem 3.1 if strictly − ∂u

∂t + Lu > 0 in D, then u can either achieve its (finite)
maximum only on ET \ DT or be unbounded on ET .

Remark 3.3 We cannot prove Assertion 2 of Theorem 3.1 in the same way as the
corresponding assertion in Theorem 2.2. In fact, if we introduce similarly the set
D+
T := {(x, t) ∈ DT | u(x, t) > 0}, it will never be the form of U × (0, T ] for

someU ⊂ D. Hence we may not take advantage of the first assertion of Theorem 3.1.
Consequently, the similar judgment with Assertion 2 of Remark 2.3, which lies on the
proof of Assertion 2 in Theorem 2.2, cannot be established here.

Remark 3.4 From Theorem 2.2 and Remark 2.4, we have already known that, for u ∈
C2,2(DT ) ∩ C(ET ), the supremum (or respectively, positive supremum) is achieved
on ET \(DT )◦. The alert reader could notice that wemay have appeared to be cheating
here, as we should also verify that the kernel ν still satisfy the third assumption in the
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definition of elliptic Waldenfels operator (1) when regarding it as a kernel in Rd+1. In
fact, the modified kernel ν̂((x, t), dzds) := ν(t, x, dz)δ0(ds) does satisfy themoment
condition (3), which is enough for us even though ν̂ is not supported insideRd+1 \{0}.
See the proof of Lemma 3.11 for details.

Moreover, if − ∂u
∂t + Lu > 0 in DT , we see that the maximum (or respectively,

positive maximum) cannot be achieved on the upper boundary D × {T } by the same
argument as in the proof of Theorem 3.1. Hence, it is clear that Theorem 3.1 holds for
u ∈ C2,2(DT ) ∩ C(ET ), which is a natural consequence of Theorem 2.2.

However, the result for u ∈ C2,1(DT )∩C(ET ) cannot be obtained in this way. We
only need the first-order differentiability in t , benefiting from the form of the operator
− ∂

∂t + L . This is evident in the different forms of uε in (11) and (32).

Remark 3.5 There are two special cases for the weak maximum principle Theorem
3.1 for the parabolic operator − ∂

∂t + L . That is, E = R
d or E = D. Take the

latter as an example. Let u ∈ C2,1(DT ) ∩ C(DT ), − ∂u
∂t + Lu ≥ 0 in DT , and

supp ν(t, x, ·) ⊂ D − x for each (x, t) ∈ DT , where D is open and bounded but not
necessarily connected.

1. If c ≡ 0 in DT , then

max
DT

u = max
�T

u.

2. If c ≤ 0 in DT , then

max
DT

u ≤ max
�T

u+.

Here �T is the parabolic boundary of DT , i.e., �T := DT \ DT = (∂D × [0, T ]) ∪
(D × {0}).

There are some consequences of the weak maximum principle for a parabolic
Waldenfels operator. We only highlight the following results.

Corollary 3.6 Let D be an open and bounded set but not necessarily connected, and
E be an open set satisfying D ⊂ E. Assume that u ∈ C2,1(DT ) ∩ C(ET ), and
supp ν(t, x, ·) ⊂ E − x for each (x, t) ∈ DT .

1. If c ≡ 0 and − ∂u
∂t + Lu ≤ 0 both hold in DT , then

inf
ET

u = inf
ET \DT

u.

2. If c ≤ 0 and − ∂u
∂t + Lu ≤ 0 both hold in DT , then

inf
ET

u ≥ − sup
ET \DT

u−.
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3. If c ≤ 0 and − ∂u
∂t + Lu = 0 both hold in DT , then

sup
ET

|u| = sup
ET \DT

|u|.

Here the supremum and infimum may be infinity.

Corollary 3.7 Let D be an open and bounded set but not necessarily connected, and
E be an open set satisfying D ⊂ E. Assume that u, v ∈ C2,1(DT ) ∩C(ET ), c ≤ 0 in
DT , and supp ν(t, x, ·) ⊂ E − x for each (x, t) ∈ DT . There is no sign condition on
c.

1. (Comparison Principle) If − ∂u
∂t + Lu ≤ − ∂v

∂t + Lv in DT and u ≥ v on ET \ DT ,
then u ≥ v in ET .

2. (Uniqueness) If− ∂u
∂t + Lu = − ∂v

∂t + Lv in DT and u = v on ET \DT , then u = v

in ET .

Proof In the case that c ≤ 0 in DT , the two conclusions are trivially followed by
applying Corollary 3.6 to u − v.

For general case without any assumption on the sign of c, we only need to prove
that if − ∂u

∂t + Lu ≤ 0 in DT and u ≥ 0 on ET \ DT , then u ≥ 0 in ET . Define
uβ := ue−βt . Then u ≥ 0 is equivalent to uβ ≥ 0. We calculate

−∂u

∂t
+ Lu = eβt

(
− ∂uβ

∂t
+ Luβ − βuβ

)
.

Hence − ∂u
∂t + Lu ≤ 0 is equivalent to − ∂uβ

∂t + (L − β)uβ ≤ 0. Choose a sufficiently
large β, we can ensure c − β, the zeroth-order coefficient of operator L − β, to be
nonpositive in DT . By the preceding statements, we know uβ ≥ 0 in ET , equivalently,
u ≥ 0 in ET . ��
Corollary 3.8 Let D be an open and bounded set but not necessarily connected, and E
be an open set satisfying D ⊂ E. Assume that u, v ∈ C2,1(DT )∩C(ET ),− ∂u

∂t +Lu =
0 in DT , and supp ν(t, x, ·) ⊂ E − x for each (x, t) ∈ DT . If maxDT

c ≤ β < 0,
then

max
ET

|u| ≤ eβT max
ET \DT

|u|.

Proof We consider the function uβ := ue−βt like in the previous corollary. By the
same argument we know that − ∂u

∂t + Lu = 0 is equivalent to − ∂uβ

∂t + (L −β)uβ = 0.
The zeroth-order coefficient of operator L − β, i.e., c − β, is nonpositive in DT .
Therefore, Assertion 3 of Corollary 3.6 implies that

e−βT max
ET

|u| ≤ max
ET

|uβ | = max
ET \DT

|uβ | ≤ max
ET \DT

|u|.

Our result follows. ��
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3.2 Strong maximum principle for parabolic case

We now turn to the strong maximum principle for the parabolic Waldenfels operator
− ∂

∂t + L .

Theorem 3.9 (Strong maximum principle for parabolic Waldenfels operators) Let D
be an open and connected set but not necessarily bounded, and E be an open set
satisfying D ⊂ E. Assume that u ∈ C2,2(DT ) ∩ C(ET ), − ∂u

∂t + Lu ≥ 0 in DT , and
supp ν(t, x, ·) ⊂ E − x for each (x, t) ∈ DT . Moreover, assume that the mapping
(x, t) → ν(t, x, ·) is continuous in DT . If one of the following conditions holds:

1. c ≡ 0 in DT and u achieves a (finite) maximum over ET at a point (x0, t0) ∈ DT ;
2. c ≤ 0 in DT and u achieves a (finite) nonnegative maximum over ET at a point

(x0, t0) ∈ DT ;
3. u achieves a zero maximum over ET at a point (x0, t0) ∈ DT ,

then u is constant on Dt0 , where Dt0 = D × (0, t0].
A result of strong maximum principle for viscosity solutions of certain nonlinear

nonlocal parabolic operators proved in [5] required a “nondegeneracy” condition,
which is crucial in that context. But our strong maximum principle for linear nonlocal
parabolic operator in Theorem 3.9 does not need this or any other conditions like this.

The converse case that − ∂u
∂t + Lu ≤ 0 in DT is immediate.

Corollary 3.10 Let D be an open and connected set but not necessarily bounded,
and E be an open set satisfying D ⊂ E. Assume that u ∈ C2,2(DT ) ∩ C(ET ),
− ∂u

∂t + Lu ≤ 0 in DT , and supp ν(t, x, ·) ⊂ E − x for each (x, t) ∈ DT . Moreover,
assume that themapping (x, t) → ν(t, x, ·) is continuous in DT . If one of the following
conditions holds:

1. c ≡ 0 in DT and u achieves a (finite) minimum over ET at a point (x0, t0) ∈ DT ;
2. c ≤ 0 in DT and u achieves a (finite) nonpositive minimum over ET at a point

(x0, t0) ∈ DT ;
3. u achieves a zero minimum over ET at a point (x0, t0) ∈ DT ,

then u is constant on Dt0 , where Dt0 = D × (0, t0].
Toprove the strongmaximumprinciple,wewill consider the horizontal propagation

ofmaximizer point in space by the similar arguments in elliptic case, and further obtain
the vertical propagation of maximizer point locally in time by the weak maximum
principle in elliptic case.

Denote M := maxET
u < ∞ for convenience. Under the assumptions in Theorem

3.9, that is, u ∈ C2,2(DT ) ∩ C(ET ), − ∂u
∂t + Lu ≥ 0 in DT , and u(x0, t0) = M

with point (x0, t0) ∈ DT , supp ν(t, x, ·) ⊂ E − x for each (x, t) ∈ DT , and the
mapping (x, t) → ν(t, x, ·) is continuous in DT . Furthermore, one of the following
assumptions holds:

Assumption 1 c ≡ 0 in DT .

Assumption 2 c ≤ 0 in DT and M ≥ 0.
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Assumption 3 M = 0.

The following lemma follows from Theorem 2.8 and Remark 2.14.

Lemma 3.11 Let B ⊂ R
d+1 be a open ball with B ⊂ DT . Assume that there exists a

point (x0, t0) ∈ ∂B such that u(x0, t0) = M and u(x, t) < M for each point (x, t) ∈
B. Then t0 is either the smallest or the largest value over all the time coordinates of
points in B.

Proof If t0 = T , the theorem is trivial. Hence we assume t0 < T . Equivalently,
(x0, t0) is an interior point of DT .

We regard the parabolic Waldenfels operator − ∂
∂t + L as a degenerate elliptic

Waldenfels operator by writing

(
− ∂

∂t
+ L

)
u(x, t)

= −∂u

∂t
(x, t) + tr[aT (∇2u)](x, t) + bT∇u(x, t) + cu(x, t)

+
∫

Rd\{0}
[
u(x + z, t) − u(x, t) − zT∇u(x, t) · 1{|z|<1}

]
ν(t, x, dz)

= tr

[ (
a 0
0 0

)T

(∇2
x,t u)

]
(x, t) + (bT ,−1) · ∇x,t u(x, t) + cu(x, t)

+
∫

Rd+1

[
u(x + z, t + s) − u(x, t)

− (zT , s) · ∇x,t u(x, t) · 1{|z|2+|s|2≤1}
]
ν(t, x, dz)δ0(ds).

Thus, we can replace the matrix a in the elliptic Waldenfels operator (5) by â =(
a 0
0 0

)
, vector b by b̂ =

(
b

−1

)
, and the kernel ν(x, dz) by ν̂((x, t), dzds) :=

ν(t, x, dz)δ0(ds).
Now we verify that the kernel ν̂, defined on R

d+1, satisfies the moment condition
(3), although its support is not contained in R

d+1 \ {0}. By recalling (29), condition
(3) for ν̂ immediately follows as we see that

∫

Rd+1

[
1 ∧ (|z|2 + |s|2)]ν̂(x, t, dzds)

=
∫

Rd+1

[
1 ∧ (|z|2 + |s|2)]ν(t, x, dz)δ0(ds)

=
∫

Rd\{0}
(1 ∧ |z|2)ν(t, x, dz)

< ∞.

(33)

Since (x0, t0) is the maximizer point over ET of u, we may replace the set E0 in (19)
by

Ê0 := {(x, t) ∈ E × {t0} | u(x, t) = M}.
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Due to the fact that the support of measure ν̂((x0, t0), ·) is contained in E × {0}, we
can further derive (21) for ν̂ and Ê0. It turns out that (24) and (25), (26) also hold in
this situation.

Combining Remark 2.14 and the preceding arguments , we conclude that, as in
Theorem 2.8, ∂u

∂n > 0 holds in the case that the unit outer normal vector n of (x0, t0)
over ∂B is not in the nullspace of a(x0, t0), which is exactly the space N := {(x, t) |
x = 0}. But this leads to a contradiction: since u attains a maximum at the interior
point (x0, t0), we have ∂u

∂n = 0. Therefore, (x0, t0) must be a pole of ball B, whose
unit outer normal vector is just in N . This completes the proof. ��

The next lemma shows that for every t ∈ (0, T ), we have either u(x, t) < M or
u(x, t) = M for all x ∈ D. Thismeans that the non-maximizer point (or themaximizer
point) may propagation horizontally in space. The proof can be found in [24], we do
not present it here and the main points of the proof can be found in Sect. 5.

Lemma 3.12 Assume that u(x0, t0) < M with x0 ∈ D and t0 ∈ (0, T ). Then
u(x, t0) < M for every x ∈ D.

Remark 3.13 In Lemma 3.12, we restrict the set D to be connected to make sure
that the point (x1, t0) can be chosen. More generally, if D is not connected, we may
replace D in the previous proof with the connected component of Dwhich contains the
maximizer point. We thus conclude that for every fixed t ∈ (0, T ), either u(x, t) < M
or u(x, t) = M holds in each connected component of D. Then as in Remark 2.12,
we see that the diffusion term gives rise to the horizontal propagation of maximizer
point in the corresponding connected component.

As in Remark 2.9, or from [5,7], we also see that the horizontal propagation of
maximizer point by translation of measure support. Namely, if u(x0, t0) = M with
x0 ∈ D and t0 ∈ (0, T ), then u ≡ M on the set

⋃∞
n=0 Λn , where Λ̃n’s are defined by

induction,
Λ̃0 = x0, Λ̃n+1 =

⋃

x∈D∩Λ̃n

[ supp ν(t0, x, ·) + x].

Thus in this scheme, the jump diffusion term leads to the horizontal propagation of
maximizer point between those connected components, since jumps from one con-
nected component to another might occur whenmeasure supports overlap two or more
connected components.

Furthermore, we present the final lemma we need. It means the maximizer point
may propagate vertically in time in a local sense. The proof can also be found in Sect. 5

Lemma 3.14 Assume that u < M in D × (t0, t1), with 0 ≤ t0 < t1 ≤ T . Then
u < M in D × {t1}.

Finally we can prove Theorem 3.9.

Proof of Theorem 3.9 Set D<
T := {(x, t) ∈ DT | u(x, t) < M}. Then D<

T is a
relatively open subset of DT . From Lemma 3.12, we know that for each fixed t ∈
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(0, T ), either u(x, t) < M or u(x, t) = M holds for all x ∈ D. Therefore, D<
T must

be of the form D × I , for some I ⊂ (0, T ] relatively open in (0, T ].
For fixed s ∈ I and s �= T , define τ(s) := sup{t | (s, t) ⊂ I }, where the set in

supremum is never empty as I is relatively open in (0, T ]. From Lemma 3.14, we
see τ(s) ∈ I . Then (r, τ (s)] is the connected component in I containing s, for some
r < s. Consequently τ(s) = T , since I is relatively open. Thus we summarize that
for each s ∈ I , [s, T ] ⊂ I , which is trivial when s = T . Hence, the relatively open
set I only has two options: either [0, T ] or (s, T ] for some s ∈ [0, T ). In light of the
fact u(x0, t0) = M , or equivalently t0 ∈ I , we conclude that I must be of the form
(s, T ] for some s ∈ [t0, T ), as required. This finishes the proof of Theorem 3.9. ��

4 Examples

We will give some examples in this section. These examples are all concerned with
symmetric α-stable Lévy noise which are not covered in Taira’s framework in [30],
since the jump measure is of unbounded support.

Example 4.1 (Mean exit time) Consider a stochastic system in Rd :

dXt = b(Xt )dt + dWt + dLα
t ,

where Wt is a standard Wiener process, and Lα
t is a Lévy process with jump measure

να(dz) = cα,d
dz

|z|d+α , for α ∈ (0, 2) and cα,d a positive constant depending on α and
d, together with zero drift and zero diffusion. The generator for this system is the
following elliptic Waldenfels operator

Lu(x) =1

2
�u(x) + b(x) · ∇u(x)

+
∫

Rd\{0}

[
u(x + z) − u(x) −

d∑
j=1

z j
∂u

∂x j
(x)1{|z|<1}

]
να(dz).

Let D be a domain inRd . The mean exit time for Xt , starting at x , exits firstly from
D is denoted by τ(x). By Dynkin formula for such jump diffusion process [3,13], as
shown in [8,21,25], we know that τ satisfies the following equation,

{
Lτ = −1 in D,

τ = 0 in Dc.

By the strong maximum principle 2.8, or precisely Corollary 2.11 with the special
case E = R

d , we conclude that the mean exit time τ cannot take zero value inside D,
unless it is constant (inside the domain D).

Example 4.2 (Escape probability) Similarly, letU be a subset of Dc. The likelihood
that Xt , starting at x , exits firstly from D by landing in the target set U is called the
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escape probability from D to U , denoted by p(x). As shown in [20,23], the escape
probability p satisfies the following equation,

⎧
⎪⎨
⎪⎩

Lp = 0 in D,

p = 1 in U,

p = 0 in Dc \U.

By Theorem 2.8 and Corollary 2.11 with E = R
d , we conclude that p cannot take

values of zero or one at any point inside D.

Example 4.3 (Fokker–Planck equation) Consider a stochastic system in R
d :

{
dXt = b(Xt )dt + dWt + dLα

t ,

X0 = x0,
(34)

where Wt is a standard Wiener process and Lα
t is a Lévy process with pure jump

measure να(dz) = cα,d
dz

|z|d+α , for α ∈ (0, 2) and cα,d a positive constant depending
on α and d. The Fokker–Planck equation for the probability density of the solution,
as shown in [8,10], is

∂p

∂t
= 1

2
�p − b(x) · ∇ p − (∇ · b)p

+
∫

Rd\{0}

[
p(x + z, t) − p(x, t) −

d∑
j=1

z j
∂p

∂x j
(x, t)1{|z|<1}

]
να(dz).

(35)

Let D be a domain in R
d . In this case, the coefficient of zeroth-order term is

c = −∇ · b. We apply the strong maximum principle in Theorem 3.9 and Corollary
3.10 with E = R

d . If ∇ · b ≡ 0, which means the deterministic vector field of
stochastic system (34) is divergence-free, then the probability density p cannot attain
its maximum (or minimum) over Rd × [0,∞) in D × [0,∞), unless it is constant at
all time before the maximizer (or minimizer) point. Moreover, if ∇ · b ≥ 0, then p
cannot attain its maximum or zero minimum over Rd × [0,∞) in D × [0,∞) (note
that p only takes nonnegative values), unless it is constant at all time before this point
as well.
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Fig. 2 Sketch for Lemma 3.12

5 Appendix: Proofs for lemmas

The proofs of some technical lemmas will be presented here for the sake of complete-
ness.

5.1 Proof of Lemma 3.12

Assumeon the contrary that D×{t0} contains somepoints atwhich u = M . Choose the
point (x1, t0) nearest to (x0, t0) at the line {(x, t0) | x ∈ D}, such that u(x1, t0) = M ,
which is possible since D is connected and the set {(x, t) ∈ DT | u(x, t) = M} (or
simply, {u = M}) is relatively closed in DT . Denote by l the line segment connecting
(x0, t0) with (x1, t0), and set

δ = min{|x1 − x0|, dist(l, ∂D)}.

For x ∈ l0 := {x | (x, t0) ∈ l, 0 < |x − x1| < δ}, define

ρ(x) = dist((x, t0), (DT )◦ ∩ {u = M}).

Obviously, 0 < ρ(x) ≤ |x − x1| in l0. See Fig. 2.
Consider next the open ball B := B((x, t0), ρ(x)) ⊂ R

d+1 with center (x, t0) and
radius ρ(x). Then B ⊂ DT , u < M in B and ∂B contains points where u = M . Thus
by Lemma 3.11 we conclude that either u(x, t0+ρ(x)) = M or u(x, t0−ρ(x)) = M .
By the Pythagorean theorem, we assert

ρ(x + εe)2 ≤ ρ(x)2 + ε2,

for sufficiently small |ε| > 0, where e is the unit vector along l. In the same way,
ρ(x)2 ≤ ρ(x + εe)2 + ε2. We note that

lim
ε→0

√
ρ(x)2 − ε2 − ρ(x)

ε
≤ lim

ε→0

ρ(x + εe) − ρ(x)

ε
≤ lim

ε→0

√
ρ(x)2 + ε2 − ρ(x)

ε
,
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which implies that

d
√

ρ(x)2 − ε2

dε

∣∣∣∣
ε=0

≤ dρ(x + εe)

dε

∣∣∣∣
ε=0

≤ d
√

ρ(x)2 + ε2

dε

∣∣∣∣
ε=0

.

This leads to
dρ(x + εe)

dε

∣∣∣∣
ε=0

= 0,

for each x ∈ l0. Consequently, ρ(x) is a constant in l0, which is a contradiction since
ρ(x) > 0 in l0 and ρ(x) → 0 as x → x1. The proof is complete.

5.2 Proof of Lemma 3.14

Assume that there exists a point x1 ∈ D such that u(x1, t1) = M . Let B̂ :=
B((x1, t1), r) ⊂ R

d+1 be such a small ball that B̂ ∩ (E × (t0, t1)) is contained
in DT . Define

v(x, t) := e−|x−x1|2−β(t−t1) − 1 for (x, t) ∈ E × [t0, t1],

where β is a positive constant as selected below. Then for (x, t) ∈ B̂ ∩ (E × (t0, t1)),

∂v

∂t
= −βe−|x−x1|2−β(t−t1),

and also

Av = e−|x−x1|2−β(t−t1)
{
tr
[
aT

(
4(x − x1) ⊗ (x − x1) − 2I

)] − 2bT (x − x1)

+ c
(
1 − e−β(t1−t)+|x−x1|2)}

= e−|x−x1|2−β(t−t1)[4(x − x1)T aT (x − x1) − 2tr(a) − 2bT (x − x1)

+ c
(
1 − e−β(t1−t)+|x−x1|2)]

≥ e−|x−x1|2−β(t−t1)[4γ |x − x1|2 − 2tr(a) − 2|b||x − x1| − |c|],

for β > 0 large enough. We set

∣∣4γ |x − x1|2 − 2tr(a) − 2|b||x − x1| − |c|∣∣ ≤ C1 < ∞,

for some positive constant C1, independent of β. Moreover, we have

Kv(x, t) = e−|x−x1|2−β(t−t1)
∫

Rd\{0}
[
e−|x+z−x1|2+|x−x1|2 − 1

+ 2zT (x − x1)1{|z|<1}
]
ν(t, x, dz).
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Fig. 3 Sketch for Lemma 3.14

Using Taylor expansions and the fact that each ν(t, x, ·) is Lévy measure, we know
that

∣∣∣∣
∫

Rd\{0}
[
e−|x+z−x1|2+|x−x1|2 − 1 + 2zT (x − x1)1{|z|<1}

]
ν(t, x, dz)

∣∣∣∣ ≤ C2 < ∞,

where C2 is a positive constant independent of β. Hence, in B̂ ∩ (E × (t0, t1))

−∂v

∂t
+ Lv ≥ −∂v

∂t
+ Av − |Kv|

≥ e−|x−x1|2−β(t−t1)(β − C1 − C2)

≥ 0,

(36)

provided β is sufficiently large.
Next limit our attention within the domain

Dβ
T := {(x, t) ∈ B̂ | |x − x1|2 + β(t − t1) < 0},

and define
uε = u + εv − M on E × [t0, t1],

for a constant ε > 0. Then choosing ε small enough, we have

uε ≤ 0 on (E × [t0, t1]) \ Dβ
T ,

since v ≤ 0 on E × [t0, t1] \ V , and u < M on V \ Dβ
T , where V := {(x, t) ∈

E × (t0, t1) | |x − x1|2 + β(t − t1) < 0} = (E × (t0, t1)) ∩ {v > 0}. See Fig. 3.
Under Assumptions 1 and 2, c ≡ 0 in DT , or c ≤ 0 in DT also M ≥ 0, from (36)

and the assumption − ∂u
∂t + Lu ≥ 0 in DT , we compute

−∂uε

∂t
+ Luε ≥ −cM ≥ 0 in Dβ

T .
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Then Remark 3.4, or more precisely, the weak maximum principle for elliptic case in
Theorem 2.2, implies that uε ≤ 0 throughout E × [t0, t1]. But uε(x1, t1) = 0, and
thus at the point (x1, t1),

0 ≤ ∂uε

∂t
= ∂u

∂t
+ ε

∂v

∂t
= ∂u

∂t
− εβ,

that is, ∂u
∂t (x

1, t1) > 0. However, as explained already in Theorem 2.2 or Theorem
3.1, we know that Lu ≤ 0 at point (x1, t1). Hence

−∂u

∂t
+ Lu < 0 at (x1, t1).

This is a contradiction.
Under Assumption 3, we may use the same argument as in the end of the proof

of Theorem 2.8, that is, replacing L and c respectively with L − c+ and c − c+ and
applying the acquired result for Assumption 2, the same result for this case follows.
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