Journal article 989 views 204 downloads
On the regularity of weak solutions to space–time fractional stochastic heat equations
Guang-an Zou,
Guangying Lv,
Jiang-lun Wu
Statistics & Probability Letters, Volume: 139, Pages: 84 - 89
Swansea University Author: Jiang-lun Wu
DOI (Published version): 10.1016/j.spl.2018.04.006
Abstract
This study is concerned with the space-time fractional stochastic heat-type equations driven by multiplicative noise, which can be used to model the anomalous heat diffusion in porous media with random effects with thermal memory. We first deduce the weak solutions to the given problem by means of t...
Published in: | Statistics & Probability Letters |
---|---|
ISSN: | 01677152 |
Published: |
ELSEVIER
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa39293 |
first_indexed |
2018-04-02T13:38:49Z |
---|---|
last_indexed |
2018-05-15T12:34:03Z |
id |
cronfa39293 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-05-15T10:59:26.5859380</datestamp><bib-version>v2</bib-version><id>39293</id><entry>2018-04-02</entry><title>On the regularity of weak solutions to space–time fractional stochastic heat equations</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-04-02</date><abstract>This study is concerned with the space-time fractional stochastic heat-type equations driven by multiplicative noise, which can be used to model the anomalous heat diffusion in porous media with random effects with thermal memory. We first deduce the weak solutions to the given problem by means of the Laplace transform and Mittag-Leffler function. Using the fractional calculus and stochastic analysis theory, we further prove the pathwise spatial-temporal regularity properties of weak solutions to this type of SPDEs in the framework of Bochner spaces.</abstract><type>Journal Article</type><journal>Statistics & Probability Letters</journal><volume>139</volume><paginationStart>84</paginationStart><paginationEnd>89</paginationEnd><publisher>ELSEVIER</publisher><issnPrint>01677152</issnPrint><keywords>Space-time fractional derivative, stochastic heat equations, weak solutions, regularity properties.</keywords><publishedDay>31</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-08-31</publishedDate><doi>10.1016/j.spl.2018.04.006</doi><url>https://www.sciencedirect.com/science/article/pii/S0167715218301469</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-05-15T10:59:26.5859380</lastEdited><Created>2018-04-02T10:20:32.8038124</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Guang-an</firstname><surname>Zou</surname><order>1</order></author><author><firstname>Guangying</firstname><surname>Lv</surname><order>2</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><order>3</order></author></authors><documents><document><filename>0039293-02042018102124.pdf</filename><originalFilename>STFSE.pdf</originalFilename><uploaded>2018-04-02T10:21:24.4400000</uploaded><type>Output</type><contentLength>255760</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-04-14T00:00:00.0000000</embargoDate><documentNotes>12 month embargo. CC-BY-NC-ND.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-05-15T10:59:26.5859380 v2 39293 2018-04-02 On the regularity of weak solutions to space–time fractional stochastic heat equations dbd67e30d59b0f32592b15b5705af885 Jiang-lun Wu Jiang-lun Wu true false 2018-04-02 This study is concerned with the space-time fractional stochastic heat-type equations driven by multiplicative noise, which can be used to model the anomalous heat diffusion in porous media with random effects with thermal memory. We first deduce the weak solutions to the given problem by means of the Laplace transform and Mittag-Leffler function. Using the fractional calculus and stochastic analysis theory, we further prove the pathwise spatial-temporal regularity properties of weak solutions to this type of SPDEs in the framework of Bochner spaces. Journal Article Statistics & Probability Letters 139 84 89 ELSEVIER 01677152 Space-time fractional derivative, stochastic heat equations, weak solutions, regularity properties. 31 8 2018 2018-08-31 10.1016/j.spl.2018.04.006 https://www.sciencedirect.com/science/article/pii/S0167715218301469 COLLEGE NANME COLLEGE CODE Swansea University 2018-05-15T10:59:26.5859380 2018-04-02T10:20:32.8038124 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Guang-an Zou 1 Guangying Lv 2 Jiang-lun Wu 3 0039293-02042018102124.pdf STFSE.pdf 2018-04-02T10:21:24.4400000 Output 255760 application/pdf Accepted Manuscript true 2019-04-14T00:00:00.0000000 12 month embargo. CC-BY-NC-ND. true eng |
title |
On the regularity of weak solutions to space–time fractional stochastic heat equations |
spellingShingle |
On the regularity of weak solutions to space–time fractional stochastic heat equations Jiang-lun Wu |
title_short |
On the regularity of weak solutions to space–time fractional stochastic heat equations |
title_full |
On the regularity of weak solutions to space–time fractional stochastic heat equations |
title_fullStr |
On the regularity of weak solutions to space–time fractional stochastic heat equations |
title_full_unstemmed |
On the regularity of weak solutions to space–time fractional stochastic heat equations |
title_sort |
On the regularity of weak solutions to space–time fractional stochastic heat equations |
author_id_str_mv |
dbd67e30d59b0f32592b15b5705af885 |
author_id_fullname_str_mv |
dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu |
author |
Jiang-lun Wu |
author2 |
Guang-an Zou Guangying Lv Jiang-lun Wu |
format |
Journal article |
container_title |
Statistics & Probability Letters |
container_volume |
139 |
container_start_page |
84 |
publishDate |
2018 |
institution |
Swansea University |
issn |
01677152 |
doi_str_mv |
10.1016/j.spl.2018.04.006 |
publisher |
ELSEVIER |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
url |
https://www.sciencedirect.com/science/article/pii/S0167715218301469 |
document_store_str |
1 |
active_str |
0 |
description |
This study is concerned with the space-time fractional stochastic heat-type equations driven by multiplicative noise, which can be used to model the anomalous heat diffusion in porous media with random effects with thermal memory. We first deduce the weak solutions to the given problem by means of the Laplace transform and Mittag-Leffler function. Using the fractional calculus and stochastic analysis theory, we further prove the pathwise spatial-temporal regularity properties of weak solutions to this type of SPDEs in the framework of Bochner spaces. |
published_date |
2018-08-31T19:22:43Z |
_version_ |
1821343967913967616 |
score |
11.04748 |