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On the regularity of weak solutions to space-time fractional
stochastic heat equations

Guang-an Zoua, Guangying Lva, Jiang-Lun Wub,∗
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Abstract

This study is concerned with the space-time fractional stochastic heat-type equations driven
by multiplicative noise, which can be used to model the anomalous heat diffusion in porous
media with random effects with thermal memory. We first deduce the weak solutions to the given
problem by means of the Laplace transform and Mittag-Leffler function. Using the fractional
calculus and stochastic analysis theory, we further prove the pathwise spatial-temporal regularity
properties of weak solutions to this type of SPDEs in the framework of Bochner spaces.

Keywords: Space-time fractional derivative, stochastic heat equations, weak solutions,
regularity properties.

1. Introduction

We consider the following space-time fractional stochastic partial differential equations (SPDEs)
on a bounded domain D ⊂ Rd(d ≥ 1):

∂βt u(x, t) = −(−4)
α
2 u(x, t) + I1−β

t [σ(u(x, t))Ẇ (x, t)], x ∈ D, t > 0,

u(x, t)|∂D = 0, t > 0,

u(x, 0) = u0(x), x ∈ D,
(1.1)

where ∂βt is the Caputo fractional derivative with β ∈ (0, 1), (−4)
α
2 is the fractional Laplacian

with α ∈ (0, 2], I1−β
t is the fractional integral operator will be given below. The dimension d and

the parameters α and β in (1.1) satisfies that d < min{2, β−1}α. Denote by Ẇ (x, t) space-time
white noise modeling the random effects, and the function σ : R → R is a globally Lipschitz
continuous function.

For any β ≥ 0, we define the function Gβ(t) : R→ R by

Gβ(t) =

{
1

Γ(β) t
β−1, t > 0,

0, t ≤ 0,
(1.2)

where G0(t) = 0 and Γ(β) denotes the gamma function. The Riemann-Liouville fractional

integral operator Iβt is defined by

Iβt f(t) = (Gβ ∗ f)(t) =
1

Γ(β)

∫ t

0

(t− s)β−1f(s)ds, t > 0, (1.3)
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with I0
t f(t) = f(t). For β ∈ (0, 1) and t > 0, then the expression

∂βt f(t) =
d

dt
[I1−β
t (f(t)− f(0))] =

d

dt
(

∫ t

0

G1−β(t− s)(f(t)− f(0))ds) (1.4)

is called the Caputo fractional derivative of order β of the function f (see [1]).
Note that the Eqs.(1.1) might be used to model the random effects on transport of particles in

medium with thermal memory. Chen et al.[2] introduced a class of SPDEs with time-fractional
derivatives and proved the existence and uniqueness of solutions to the equations. Mijena and
Nane [3] proved the existence and uniqueness of mild solutions to non-linear space-time fractional
SPDEs, and they also investigated the bounds for the intermittency fronts solutions of these
equations [4]. Foondun and Nane [5] studied the asymptotic properties of space-time fractional
SPDEs. Chen et al. [6] proved the existence and uniqueness of solutions to space-time fractional
SPDEs in Gaussian noisy environment. It was worth mentioning that the above authors mainly
focused on the mild solutions based on the Green function. As we known, the regularity of
weak solutions to the fractional SPDEs has received less attention. The aim of this paper is to
study the regularity of weak solutions to space-time fractional SPDEs, which are needed for the
error analysis of numerical methods, for example, Zou et al.[16,17] investigated the finite element
methods for solving a special case of fractional SPDEs in the given problem (1.1).

The remaining of this paper is organized as follows. In Section 2, some notations and pre-
liminaries will be introduced, and we also deduce the weak solutions to the space-time fractional
SPDEs. In Section 3, stochastic analysis techniques and fractional calculus are used to prove the
spatial and temporal regularity properties of weak solutions to the equations (1.1) in Bochner
spaces.

2. Notations and preliminaries

Let (Ω,F ,P, {Ft}t≥0) be a filtered probability space with the normal filtration {Ft}t≥0.
Recall that Q is a positive bounded linear operator on some Hilbert space U with finite trace.
Let W = {W (t), t ≥ 0} be a U -valued Wiener process with covariance operator Q. We introduce
the subspace U0 = Q1/2(U), which endowed with the inner product:

(u, v)U0 = (Q1/2u,Q1/2v), u, v ∈ U0,

and induced norm ‖ · ‖U0
, where Q−1/2 denotes the pseudo-inverse of Q1/2. Denote by L0

2 =
L2(U0, H) the space of Hilbert-Schmidt operators T : U0 → H endowed with the norm

‖ϕ‖2L0
2

= Tr[(ϕQ1/2)(ϕQ1/2)∗] <∞,

for any ϕ ∈ L0
2. The details description of Wiener process should be referred to [7]. Let p ≥ 2 and

{v(t)}t∈[0,T ] be an L0
2-valued predictable stochastic process, the following generalized version of

Itô isometry (including the Burkholder-Davis-Gundy inequality) are important for the stochastic
integrals [8], that is

E‖
∫ t

0

v(s)dW (s)‖p ≤ C(p)E[(

∫ t

0

‖v(s)‖2L2
0
ds)

p
2 ], t ∈ [0, T ], (2.1)

where E denotes the expectation and C(p) > 0 is a constant.
Next, we shall introduce fractional order spaces and norms. Define a linear operator A := −∆

with zero Dirichlet boundary condition on D. Denote by {ϕk}k≥1 the complete orthonormal
system of eigenfunctions in H for the operator A, i.e., for k = 1, 2, · · · ,

Aϕk = λkϕk, ϕk|∂D = 0,
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with λ1 ≤ λ2 ≤ · · · , λk ≤ · · · .
For any s > 0, let Ḣs be the domain of the fractional power A

s
2 = (−4)

s
2 , which can be

defined by

A
s
2 v =

∞∑
k=1

λ
s
2

k (v, ϕk)ϕk, Ḣ
s = D(A

s
2 ) = {v ∈ H : ‖A s

2 v‖2 =

∞∑
k=1

λsk(v, ϕk)2 <∞},

with inner product (u, v)Ḣs = (A
s
2u,A

s
2 v) and induced norms ‖v‖2

Ḣs
= ‖A s

2 v‖2 =
∞∑
k=1

λsk(v, ϕk)2.

It is known that Ḣ0 = H, Ḣ1 = H1
0 (D) and Ḣ2 = H2(D) ∩H1

0 (D) with equivalent norms and
that Ḣ−s can be identified with the dual space (Ḣs)∗ for s > 0. In order to quantify the regularity
we introduce the Bochner spaces Lp(Ω;B) = Lp((Ω,F ,P);B) endowed with the norm:

‖v‖Lp(Ω;B) = (E[‖v‖pB ])
1
p ,∀ v ∈ Lp(Ω;B),

where B being a Banach space and for any p ≥ 2.
For the sake of convenient, the Eqs.(1.1) can be rewritten as the following abstract formula-

tion: {
∂βt u(t) +Aαu(t) = I1−β

t [σ(u(t))Ẇ (t)], t > 0,

u(0) = u0,
(2.2)

where we denote u(t) = u(·, t) and replace the fractional operator (−4)
α
2 by Aα := A

α
2 . Indeed,

it is convenient to treat u as a function of t taking value in H with the Fourier coefficients uk(t)
as follows

u(t) =

∞∑
k=1

uk(t)ϕk, where uk(t) = (u(t), ϕk),

and we likewise put Gk(t) = (σ(u(t))Ẇ (t), ϕk) and u0k = (u0, ϕk).
Taking the inner produce of ϕk with (2.2) gives the sequence of scalar initial value problem{

∂βt uk(t) + λ
α
2

k uk(t) = I1−β
t Gk(t), t > 0,

uk(0) = u0k.
(2.3)

Next, we recall some facts about the theory of fractional calculus. Firstly, we introduce the
Laplace transform of the function f with respect to t by

f̂(z) = L{f(t)} =

∫ ∞
0

e−ztf(t)dt,

then the Laplace transform of the Caputo derivative ∂βt in (1.4) and the Riemann-Liouville

fractional integral operator Iβt in (1.3) are given by (see [9,10])

L{∂βt f(t)} = zβ f̂(z)− zβ−1f(0), L{Iβt h(t)} = z−βĥ(z). (2.4)

Applying the Laplace transform to both sides of (2.3) and using (2.4) we deduce that

zβ ûk(z)− zβ−1uk(0) + λ
α
2

k ûk(z) = zβ−1Ĝk(z),
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and so

ûk(z) =
zβ−1

zβ + λ
α
2

k

[uk(0) + Ĝk(z)]. (2.5)

Now, we define the Mittag-Leffler function by (see [11,12])

Eβ(t) =

∞∑
k=0

tk

Γ(βk + 1)
, (2.6)

and using the Laplace transform with respect to (2.6) yields

L{Eβ(−λtβ)} =

∫ ∞
0

e−ztEβ(−λtβ)dt =
zβ−1

zβ + λ
.

Therefore, the representation (2.5) implies that

uk(t) = Eβ(−λ
α
2

k t
β)u0k +

∫ t

0

Eβ(−λ
α
2

k (t− s)β)σ(u(s))dW (s), t > 0,

leading us to define the operator E(t):

E(t)v =

∞∑
k=1

Eβ(−λ
α
2

k t
β)(v, ϕk)ϕk(x),

so that u(t) = E(t)u0 is the solution of (2.2) when σ(u) = 0, and in general

u(t) = E(t)u0 +

∫ t

0

E(t− s)σ(u(s))dW (s). (2.7)

Under appropriate conditions, see the assumptions 3.1 and 3.2 below, the Ft-adapted process
(u(t))t∈[0,T ] is called a unique weak solution to Eqs.(2.2) if it satisfies the integral equation (2.7)
for almost surely ω ∈ Ω. On the other hand, under the assumption that d < min{2, β−1}α, the
existence of solutions to this type of space-time fractional equations (containing multi-fractional
in space variable) in bounded domains have been established in [3,14,15], respectively. Comparing
to the results obtained in those papers, what we constructed here is a new formulation of solutions
to the space-time fractional equations, and we establish the new regularity properties of solutions
to the equations in the framework of Bochner spaces.

3. Main results

This section we only focus on the pathwise spatial-temporal regularity properties of weak
solutions (2.7) to (2.2). Throughout the paper, we will impose the following assumptions.

Assumption 3.1. The measurable function σ : Ω × H → L2
0 satisfies the following global

Lipschitz and growth conditions:

‖σ(v)‖L2
0
≤ C‖v‖, ‖σ(u)− σ(v)‖L2

0
≤ C‖u− v‖, (3.1)

for any u, v ∈ H.
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Assumption 3.2. Assume that the initial value u0 : Ω → Ḣν is a F0−measurable random
variable, it holds that

‖u0‖Lp(Ω;Ḣν) <∞, (3.2)

for any 0 ≤ ν < α ≤ 2.
Lemma 3.1. For any t > 0, 0 < β < 1 and 0 ≤ ν < α ≤ 2, there exists a constant C > 0

such that

‖( d
dt

)mE(t)v‖Ḣν ≤ Ct
− βν2 −m‖v‖Ḣ(2−α)ν/2 , (3.3)

with m = 0, 1, 2, · · · .
Proof. The Mittag-Leffler function admits the asymptotic expansion (see [10,13]):

Eβ(−t) =

N∑
k=1

(−1)k+1t−k

Γ(1− βk)
+O(t−N−1), 0 < β < 2, as t→∞, (3.4)

For 0 < t <∞ and −2 ≤ µ ≤ 2, we define g(t) = Eβ(−tβ) so that g(λα/2βt) = Eβ(−λα/2tβ),
from the series definition of (2.6) and (3.4), we see that

tm|( d
dt

)mg(t)| ≤ C min(tβ , t−β) ≤ Ct−
βµ
2 , m = 0, 1, 2, · · · ,

so by the chain rule

tm|( d
dt

)mg(λα/2βt)| = (λα/2βt)m|( d
dt

)mg(λα/2βt)| ≤ C(λα/2βt)−
βµ
2 = Cλ−

αµ
4 t−

βµ
2 . (3.5)

Thus, for t > 0 and 0 ≤ ν < α ≤ 2, by means of (3.5), we get

‖tm(
d

dt
)mE(t)v‖2

Ḣν
=

∞∑
k=1

λνk[tm(
d

dt
)mEβ(−λ

α
2

k t
β)(v, ϕk)]2

≤ Ct−βν
∞∑
k=1

λ
(2−α)ν

2

k (v, ϕk)2

= Ct−βν‖v‖2
Ḣ(2−α)ν/2 .

Lemma 3.2. For any 0 ≤ t1 < t2 ≤ T and 0 < ν < α ≤ 2, there exists a constant C > 0
such that

‖[E(t2)− E(t1)]v‖Ḣν ≤ C(t2 − t1)
βν
2 ‖v‖Ḣ(2−α)ν/2 . (3.6)

Proof. For any 0 < T0 ≤ t1 < t2 ≤ T , by virtue of Lemma 3.1 (m = 1) we have

‖[E(t2)− E(t1)]v‖Ḣν = ‖
∫ t2

t1

d

dt
E(t)vdt‖Ḣν

≤ C(

∫ t2

t1

t−
βν
2 −1dt)‖v‖Ḣ(2−α)ν/2

=
2C

βν
(t
− βν2
1 − t−

βν
2

2 )‖v‖Ḣ(2−α)ν/2

≤ 2C

βνT βν0

(t2 − t1)
βν
2 ‖v‖Ḣ(2−α)ν/2 ,
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where we have used ta2 − ta1 ≤ C(t2 − t1)a for 0 ≤ t1 < t2 ≤ T and 0 ≤ a ≤ 1.
Now, we will prove the spatial and temporal regularity properties of weak solutions to time-

space fractional SPDEs in the framework of Bochner spaces.
Theorem 3.1. Let Assumptions 3.1 and 3.2 hold with 0 ≤ ν < α ≤ 2 and p ≥ 2, let u(t)

be a unique weak solution of (2.2) with P(u(t) ∈ Ḣν) = 1 for any t ∈ [0, T ], then there exists a
constant C such that

sup
t∈[0,T ]

‖u(t)‖Lp(Ω;Ḣν) ≤ Ct
− βν2 ‖u0‖Lp(Ω;Ḣ(2−α)ν/2).

Proof. For any 0 ≤ t ≤ T and 0 ≤ ν < α < 2, from the weak solution (2.7) we have

E‖u(t)‖p
Ḣν
≤ 2p−1E‖E(t)u0‖pḢν + 2p−1E‖

∫ t

0

E(t− s)σ(u(s))dW (s)‖p
Ḣν
. (3.7)

Using Lemma 3.1 (m = 0), the first term on the right hand sides of (3.7) can be estimated
by

E‖E(t)u0‖pḢν ≤ Ct
− pβν2 E‖u0‖pḢ(2−α)ν/2

<∞. (3.8)

By means of the generalized version of Itô isometry (2.1), Hölder’s inequality, Lemma 3.1
(m = 0) and Assumption 3.1, we can deduce

E‖
∫ t

0

E(t− s)σ(u(s))dW (s)‖p
Ḣν

≤ C(p)E[(

∫ t

0

‖E(t− s)σ(u(s))‖2
L0

2(U0,Ḣν)
ds)

p
2 ]

≤ C(p)(

∫ t

0

‖E(t− s)‖
2p
p−2 ds)

p−2
2 (

∫ t

0

sup
s∈[0,T ]

E‖σ(u(s))‖p
L0

2(U0,Ḣν)
ds)

≤ C†(p)
∫ t

0

sup
s∈[0,T ]

E‖u(s)‖p
Ḣν
ds. (3.9)

Combining with the estimates (3.7)-(3.9) and Assumptions 3.2, a direct application of Gron-
wall’s lemma yields

sup
t∈[0,T ]

E‖u(t)‖p
Ḣν
≤ Ct−

pβν
2 E‖u0‖pḢ(2−α)ν/2

≤ CT−
pβν
2

0 E‖u0‖pḢ(2−α)ν/2
<∞, (3.10)

where 0 < T0 ≤ t ≤ T .
This completes the proof of Theorem 3.1.
Next, we will devote to the Hölder regularity of the weak solutions (2.7) to (2.2).
Theorem 3.2. Let Assumptions 3.1 and 3.2 be fulfilled with 0 < ν < α ≤ 2 and p ≥ 2, for

any 0 ≤ t1 < t2 ≤ T , the unique weak solution u(t) to (2.2) is Hölder continuous with respect to
the norm ‖ · ‖Lp(Ω;Ḣν) and satisfies

‖u(t2)− u(t1)‖Lp(Ω;Ḣν) ≤ C(t2 − t1)min{ βν2 ,
1
2}.
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Proof. For any 0 ≤ t1 < t2 ≤ T , from the expression (2.7), we have

u(t2)− u(t1) = E(t2)u0 − E(t1)u0 +

∫ t2

0

E(t2 − s)σ(u(s))dW (s)

−
∫ t1

0

E(t1 − s)σ(u(s))dW (s)

= [E(t2)− E(t1)]u0 +

∫ t1

0

[E(t2 − s)− E(t1 − s)]σ(u(s))dW (s)

+

∫ t2

t1

E(t2 − s)σ(u(s))dW (s)

=: I1 + I2 + I3. (3.11)

For any 0 < ν < α ≤ 2, by virtue of Lemma 3.2, it follows that

E‖I1‖Ḣν = E‖[E(t2)− E(t1)]u0‖Ḣν ≤ C(t2 − t1)
βν
2 E‖u0‖Ḣ(2−α)ν/2 . (3.12)

Applying the Hölder inequality, Assumptions 3.1, Lemma 3.2, the estimates (2.1) and (3.10),
we have

E‖I2‖pḢν = E‖
∫ t1

0

[E(t2 − s)− E(t1 − s)]σ(u(s))dW (s)‖p
Ḣν

≤ C(p)E[(

∫ t1

0

‖[E(t2 − s)− E(t1 − s)]σ(u(s))‖2
L2

0(U0,Ḣν)
ds)

p
2 ]

≤ C(p)(

∫ t1

0

ds)
p−2
2 (

∫ t1

0

sup
s∈[0,T ]

E‖[E(t2 − s)− E(t1 − s)]σ(u(s))‖p
L2

0(U0,Ḣν)
ds)

≤ C(p)t
p−2
2

1

∫ t1

0

(t2 − t1)
pβν
2 sup

s∈[0,T ]

E‖u(s)‖p
Ḣ(2−α)ν/2

ds

≤ C†(p)T
p
2E‖u0‖pḢ(2−α)2ν/4

(t2 − t1)
pβν
2 . (3.13)

Making use of Hölder inequality, the Assumptions 3.1, Lemma 3.1 (m = 0), the estimates
(2.1) and (3.10), we obtain

E‖I3‖pḢν = E‖
∫ t2

t1

E(t2 − s)σ(u(s))dW (s)‖p
Ḣν

≤ C(p)E[(

∫ t2

t1

‖E(t2 − s)σ(u(s))‖2
L0

2(U0,Ḣν)
ds)

p
2 ]

≤ C(p)(

∫ t2

t1

‖E(t2 − s)‖
2p
p−2 ds)

p−2
2 (

∫ t2

t1

sup
s∈[0,T ]

E‖σ(u(s))‖p
L0

2(U0,Ḣν)
ds)

≤ C(p)(t2 − t1)
p−2
2

∫ t2

t1

T
− pβν2
0 E‖u0‖pḢ(2−α)ν/2

ds

≤ C‡(p)E‖u0‖pḢ(2−α)ν/2
(t2 − t1)

p
2 . (3.14)

Taking expectation on both side of (3.11), and in view of the estimates (3.12)-(3.14), we
conclude that

‖u(t2)− u(t1)‖Lp(Ω;Ḣν) ≤ C(t2 − t1)min{ βν2 ,
1
2}.

This completes the proof of Theorem 3.2.
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