Journal article 889 views 131 downloads
Reduced sintering of mass-selected Au clusters on SiO2 by alloying with Ti: an aberration-corrected STEM and computational study
Nanoscale, Volume: 10, Issue: 5, Pages: 2363 - 2370
Swansea University Author: Richard Palmer
-
PDF | Version of Record
Download (4.77MB)
DOI (Published version): 10.1039/c7nr06323g
Abstract
Au nanoparticles represent the most remarkable example of a size effect in heterogeneous catalysis. However, a major issue hindering the use of Au nanoparticles in technological applications is their rapid sintering. We explore the potential of stabilizing Au nanoclusters on SiO2 by alloying them wi...
Published in: | Nanoscale |
---|---|
ISSN: | 2040-3364 2040-3372 |
Published: |
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa36862 |
first_indexed |
2017-11-21T20:08:11Z |
---|---|
last_indexed |
2018-04-16T19:24:25Z |
id |
cronfa36862 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-04-16T15:30:59.4206200</datestamp><bib-version>v2</bib-version><id>36862</id><entry>2017-11-21</entry><title>Reduced sintering of mass-selected Au clusters on SiO2 by alloying with Ti: an aberration-corrected STEM and computational study</title><swanseaauthors><author><sid>6ae369618efc7424d9774377536ea519</sid><ORCID>0000-0001-8728-8083</ORCID><firstname>Richard</firstname><surname>Palmer</surname><name>Richard Palmer</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-11-21</date><deptcode>ACEM</deptcode><abstract>Au nanoparticles represent the most remarkable example of a size effect in heterogeneous catalysis. However, a major issue hindering the use of Au nanoparticles in technological applications is their rapid sintering. We explore the potential of stabilizing Au nanoclusters on SiO2 by alloying them with a reactive metal, Ti. Mass-selected Au/Ti clusters (400 000 amu) and Au2057 clusters (405 229 amu) were produced with a magnetron sputtering, gas condensation cluster beam source in conjunction with a lateral time-of-flight mass filter, deposited onto a silica support and characterised by XPS and LEIS. The sintering dynamics of mass-selected Au and Au/Ti alloy nanoclusters were investigated in real space and real time with atomic resolution aberration-corrected HAADF-STEM imaging, supported by model DFT calculations. A strong anchoring effect was revealed in the case of the Au/Ti clusters, because of a much increased local interaction with the support (by a factor 5 in the simulations), which strongly inhibits sintering, especially when the clusters are more than ∼0.60 nm apart. Heating the clusters at 100 °C for 1 h in a mixture of O2 and CO, to simulate CO oxidation conditions, led to some segregation in the Au/Ti clusters, but in line with the model computational investigation, Au atoms were still present on the surface. Thus size-selected, deposited nanoalloy Au/Ti clusters appear to be promising candidates for sustainable gold-based nanocatalysis.</abstract><type>Journal Article</type><journal>Nanoscale</journal><volume>10</volume><journalNumber>5</journalNumber><paginationStart>2363</paginationStart><paginationEnd>2370</paginationEnd><publisher/><issnPrint>2040-3364</issnPrint><issnElectronic>2040-3372</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1039/c7nr06323g</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-04-16T15:30:59.4206200</lastEdited><Created>2017-11-21T15:09:25.0434835</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering</level></path><authors><author><firstname>Yubiao</firstname><surname>Niu</surname><order>1</order></author><author><firstname>Philomena</firstname><surname>Schlexer</surname><order>2</order></author><author><firstname>Bela</firstname><surname>Sebok</surname><order>3</order></author><author><firstname>Ib</firstname><surname>Chorkendorff</surname><order>4</order></author><author><firstname>Gianfranco</firstname><surname>Pacchioni</surname><order>5</order></author><author><firstname>Richard</firstname><surname>Palmer</surname><orcid>0000-0001-8728-8083</orcid><order>6</order></author></authors><documents><document><filename>0036862-12022018155407.pdf</filename><originalFilename>niu2018.pdf</originalFilename><uploaded>2018-02-12T15:54:07.0830000</uploaded><type>Output</type><contentLength>4982780</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-02-12T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-04-16T15:30:59.4206200 v2 36862 2017-11-21 Reduced sintering of mass-selected Au clusters on SiO2 by alloying with Ti: an aberration-corrected STEM and computational study 6ae369618efc7424d9774377536ea519 0000-0001-8728-8083 Richard Palmer Richard Palmer true false 2017-11-21 ACEM Au nanoparticles represent the most remarkable example of a size effect in heterogeneous catalysis. However, a major issue hindering the use of Au nanoparticles in technological applications is their rapid sintering. We explore the potential of stabilizing Au nanoclusters on SiO2 by alloying them with a reactive metal, Ti. Mass-selected Au/Ti clusters (400 000 amu) and Au2057 clusters (405 229 amu) were produced with a magnetron sputtering, gas condensation cluster beam source in conjunction with a lateral time-of-flight mass filter, deposited onto a silica support and characterised by XPS and LEIS. The sintering dynamics of mass-selected Au and Au/Ti alloy nanoclusters were investigated in real space and real time with atomic resolution aberration-corrected HAADF-STEM imaging, supported by model DFT calculations. A strong anchoring effect was revealed in the case of the Au/Ti clusters, because of a much increased local interaction with the support (by a factor 5 in the simulations), which strongly inhibits sintering, especially when the clusters are more than ∼0.60 nm apart. Heating the clusters at 100 °C for 1 h in a mixture of O2 and CO, to simulate CO oxidation conditions, led to some segregation in the Au/Ti clusters, but in line with the model computational investigation, Au atoms were still present on the surface. Thus size-selected, deposited nanoalloy Au/Ti clusters appear to be promising candidates for sustainable gold-based nanocatalysis. Journal Article Nanoscale 10 5 2363 2370 2040-3364 2040-3372 31 12 2018 2018-12-31 10.1039/c7nr06323g COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2018-04-16T15:30:59.4206200 2017-11-21T15:09:25.0434835 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering Yubiao Niu 1 Philomena Schlexer 2 Bela Sebok 3 Ib Chorkendorff 4 Gianfranco Pacchioni 5 Richard Palmer 0000-0001-8728-8083 6 0036862-12022018155407.pdf niu2018.pdf 2018-02-12T15:54:07.0830000 Output 4982780 application/pdf Version of Record true 2018-02-12T00:00:00.0000000 true eng |
title |
Reduced sintering of mass-selected Au clusters on SiO2 by alloying with Ti: an aberration-corrected STEM and computational study |
spellingShingle |
Reduced sintering of mass-selected Au clusters on SiO2 by alloying with Ti: an aberration-corrected STEM and computational study Richard Palmer |
title_short |
Reduced sintering of mass-selected Au clusters on SiO2 by alloying with Ti: an aberration-corrected STEM and computational study |
title_full |
Reduced sintering of mass-selected Au clusters on SiO2 by alloying with Ti: an aberration-corrected STEM and computational study |
title_fullStr |
Reduced sintering of mass-selected Au clusters on SiO2 by alloying with Ti: an aberration-corrected STEM and computational study |
title_full_unstemmed |
Reduced sintering of mass-selected Au clusters on SiO2 by alloying with Ti: an aberration-corrected STEM and computational study |
title_sort |
Reduced sintering of mass-selected Au clusters on SiO2 by alloying with Ti: an aberration-corrected STEM and computational study |
author_id_str_mv |
6ae369618efc7424d9774377536ea519 |
author_id_fullname_str_mv |
6ae369618efc7424d9774377536ea519_***_Richard Palmer |
author |
Richard Palmer |
author2 |
Yubiao Niu Philomena Schlexer Bela Sebok Ib Chorkendorff Gianfranco Pacchioni Richard Palmer |
format |
Journal article |
container_title |
Nanoscale |
container_volume |
10 |
container_issue |
5 |
container_start_page |
2363 |
publishDate |
2018 |
institution |
Swansea University |
issn |
2040-3364 2040-3372 |
doi_str_mv |
10.1039/c7nr06323g |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Au nanoparticles represent the most remarkable example of a size effect in heterogeneous catalysis. However, a major issue hindering the use of Au nanoparticles in technological applications is their rapid sintering. We explore the potential of stabilizing Au nanoclusters on SiO2 by alloying them with a reactive metal, Ti. Mass-selected Au/Ti clusters (400 000 amu) and Au2057 clusters (405 229 amu) were produced with a magnetron sputtering, gas condensation cluster beam source in conjunction with a lateral time-of-flight mass filter, deposited onto a silica support and characterised by XPS and LEIS. The sintering dynamics of mass-selected Au and Au/Ti alloy nanoclusters were investigated in real space and real time with atomic resolution aberration-corrected HAADF-STEM imaging, supported by model DFT calculations. A strong anchoring effect was revealed in the case of the Au/Ti clusters, because of a much increased local interaction with the support (by a factor 5 in the simulations), which strongly inhibits sintering, especially when the clusters are more than ∼0.60 nm apart. Heating the clusters at 100 °C for 1 h in a mixture of O2 and CO, to simulate CO oxidation conditions, led to some segregation in the Au/Ti clusters, but in line with the model computational investigation, Au atoms were still present on the surface. Thus size-selected, deposited nanoalloy Au/Ti clusters appear to be promising candidates for sustainable gold-based nanocatalysis. |
published_date |
2018-12-31T19:16:17Z |
_version_ |
1821343562647732224 |
score |
11.04748 |