Journal article 1347 views 140 downloads
A curvilinear high order finite element framework for electromechanics: From linearised electro-elasticity to massively deformable dielectric elastomers
Computer Methods in Applied Mechanics and Engineering
Swansea University Authors: Antonio Gil , Rubén Sevilla
-
PDF | Accepted Manuscript
Download (18.8MB)
DOI (Published version): 10.1016/j.cma.2017.09.020
Abstract
This paper presents a high order finite element implementation of the convex multi-variable electro-elasticity for large deformations large electric fields analyses and its particularisation to the case of small strains through a staggered scheme. With an emphasis on accurate geometrical representat...
Published in: | Computer Methods in Applied Mechanics and Engineering |
---|---|
ISSN: | 0045-7825 |
Published: |
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa35289 |
first_indexed |
2017-09-15T13:02:10Z |
---|---|
last_indexed |
2020-06-01T18:47:16Z |
id |
cronfa35289 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-06-01T17:00:29.4817468</datestamp><bib-version>v2</bib-version><id>35289</id><entry>2017-09-15</entry><title>A curvilinear high order finite element framework for electromechanics: From linearised electro-elasticity to massively deformable dielectric elastomers</title><swanseaauthors><author><sid>1f5666865d1c6de9469f8b7d0d6d30e2</sid><ORCID>0000-0001-7753-1414</ORCID><firstname>Antonio</firstname><surname>Gil</surname><name>Antonio Gil</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b542c87f1b891262844e95a682f045b6</sid><ORCID>0000-0002-0061-6214</ORCID><firstname>Rubén</firstname><surname>Sevilla</surname><name>Rubén Sevilla</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-09-15</date><deptcode>ACEM</deptcode><abstract>This paper presents a high order finite element implementation of the convex multi-variable electro-elasticity for large deformations large electric fields analyses and its particularisation to the case of small strains through a staggered scheme. With an emphasis on accurate geometrical representation, a high performance curvilinear finite element framework based on an a posteriori mesh deformation technique is developed to accurately discretise the underlying displacement-potential variational formulation. The performance of the method under near incompressibility and bending actuation scenarios is analysed with extremely thin and highly stretched components and compared to the performance of mixed variational principles recently reported by Gil and Ortigosa (Gil and Ortigosa, 2016; Ortigosa and Gil, 2016, 2016). Although convex multi-variable constitutive models are elliptic hence, materially stable for the entire range of deformations and electric fields, other forms of physical instabilities are not precluded in these models. In particular, physical instabilities present in dielectric elastomers such as pull-in instability, snap-through and the formation, propagation and nucleation of wrinkles and folds are numerically studied with a detailed precision in this paper, verifying experimental findings. For the case of small strains, the essence of the approach taken lies in guaranteeing the objectivity of the resulting work conjugates, by starting from the underlying convex multi-variable internal energy, whence avoiding the need for further symmetrisation of the resulting Maxwell and Minkowski-type stresses at small strain regime. In this context, the nonlinearity with respect to electrostatic counterparts such as electric displacements is still retained, hence resulting in a formulation similar but more competitive with the existing linearised electro-elasticity approaches. Virtual prototyping of many application-oriented dielectric elastomers are carried out with an eye on pattern forming in soft robotics and other potential medical applications.</abstract><type>Journal Article</type><journal>Computer Methods in Applied Mechanics and Engineering</journal><publisher/><issnPrint>0045-7825</issnPrint><keywords>Monolithic &amp; staggered electro-elasticity; High order curvilinear meshes; Dielectric elastomers; Material instability; Wrinkling</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-12-31</publishedDate><doi>10.1016/j.cma.2017.09.020</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-06-01T17:00:29.4817468</lastEdited><Created>2017-09-15T10:19:37.8912513</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Roman</firstname><surname>Poya</surname><order>1</order></author><author><firstname>Antonio</firstname><surname>Gil</surname><orcid>0000-0001-7753-1414</orcid><order>2</order></author><author><firstname>Rogelio</firstname><surname>Ortigosa</surname><order>3</order></author><author><firstname>Rubén</firstname><surname>Sevilla</surname><orcid>0000-0002-0061-6214</orcid><order>4</order></author><author><firstname>Javier</firstname><surname>Bonet</surname><order>5</order></author><author><firstname>Wolfgang A.</firstname><surname>Wall</surname><order>6</order></author></authors><documents><document><filename>0035289-15092017102022.pdf</filename><originalFilename>poya2017(2).pdf</originalFilename><uploaded>2017-09-15T10:20:22.2100000</uploaded><type>Output</type><contentLength>19746626</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-09-28T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-06-01T17:00:29.4817468 v2 35289 2017-09-15 A curvilinear high order finite element framework for electromechanics: From linearised electro-elasticity to massively deformable dielectric elastomers 1f5666865d1c6de9469f8b7d0d6d30e2 0000-0001-7753-1414 Antonio Gil Antonio Gil true false b542c87f1b891262844e95a682f045b6 0000-0002-0061-6214 Rubén Sevilla Rubén Sevilla true false 2017-09-15 ACEM This paper presents a high order finite element implementation of the convex multi-variable electro-elasticity for large deformations large electric fields analyses and its particularisation to the case of small strains through a staggered scheme. With an emphasis on accurate geometrical representation, a high performance curvilinear finite element framework based on an a posteriori mesh deformation technique is developed to accurately discretise the underlying displacement-potential variational formulation. The performance of the method under near incompressibility and bending actuation scenarios is analysed with extremely thin and highly stretched components and compared to the performance of mixed variational principles recently reported by Gil and Ortigosa (Gil and Ortigosa, 2016; Ortigosa and Gil, 2016, 2016). Although convex multi-variable constitutive models are elliptic hence, materially stable for the entire range of deformations and electric fields, other forms of physical instabilities are not precluded in these models. In particular, physical instabilities present in dielectric elastomers such as pull-in instability, snap-through and the formation, propagation and nucleation of wrinkles and folds are numerically studied with a detailed precision in this paper, verifying experimental findings. For the case of small strains, the essence of the approach taken lies in guaranteeing the objectivity of the resulting work conjugates, by starting from the underlying convex multi-variable internal energy, whence avoiding the need for further symmetrisation of the resulting Maxwell and Minkowski-type stresses at small strain regime. In this context, the nonlinearity with respect to electrostatic counterparts such as electric displacements is still retained, hence resulting in a formulation similar but more competitive with the existing linearised electro-elasticity approaches. Virtual prototyping of many application-oriented dielectric elastomers are carried out with an eye on pattern forming in soft robotics and other potential medical applications. Journal Article Computer Methods in Applied Mechanics and Engineering 0045-7825 Monolithic & staggered electro-elasticity; High order curvilinear meshes; Dielectric elastomers; Material instability; Wrinkling 31 12 2017 2017-12-31 10.1016/j.cma.2017.09.020 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2020-06-01T17:00:29.4817468 2017-09-15T10:19:37.8912513 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Roman Poya 1 Antonio Gil 0000-0001-7753-1414 2 Rogelio Ortigosa 3 Rubén Sevilla 0000-0002-0061-6214 4 Javier Bonet 5 Wolfgang A. Wall 6 0035289-15092017102022.pdf poya2017(2).pdf 2017-09-15T10:20:22.2100000 Output 19746626 application/pdf Accepted Manuscript true 2018-09-28T00:00:00.0000000 false eng |
title |
A curvilinear high order finite element framework for electromechanics: From linearised electro-elasticity to massively deformable dielectric elastomers |
spellingShingle |
A curvilinear high order finite element framework for electromechanics: From linearised electro-elasticity to massively deformable dielectric elastomers Antonio Gil Rubén Sevilla |
title_short |
A curvilinear high order finite element framework for electromechanics: From linearised electro-elasticity to massively deformable dielectric elastomers |
title_full |
A curvilinear high order finite element framework for electromechanics: From linearised electro-elasticity to massively deformable dielectric elastomers |
title_fullStr |
A curvilinear high order finite element framework for electromechanics: From linearised electro-elasticity to massively deformable dielectric elastomers |
title_full_unstemmed |
A curvilinear high order finite element framework for electromechanics: From linearised electro-elasticity to massively deformable dielectric elastomers |
title_sort |
A curvilinear high order finite element framework for electromechanics: From linearised electro-elasticity to massively deformable dielectric elastomers |
author_id_str_mv |
1f5666865d1c6de9469f8b7d0d6d30e2 b542c87f1b891262844e95a682f045b6 |
author_id_fullname_str_mv |
1f5666865d1c6de9469f8b7d0d6d30e2_***_Antonio Gil b542c87f1b891262844e95a682f045b6_***_Rubén Sevilla |
author |
Antonio Gil Rubén Sevilla |
author2 |
Roman Poya Antonio Gil Rogelio Ortigosa Rubén Sevilla Javier Bonet Wolfgang A. Wall |
format |
Journal article |
container_title |
Computer Methods in Applied Mechanics and Engineering |
publishDate |
2017 |
institution |
Swansea University |
issn |
0045-7825 |
doi_str_mv |
10.1016/j.cma.2017.09.020 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
document_store_str |
1 |
active_str |
0 |
description |
This paper presents a high order finite element implementation of the convex multi-variable electro-elasticity for large deformations large electric fields analyses and its particularisation to the case of small strains through a staggered scheme. With an emphasis on accurate geometrical representation, a high performance curvilinear finite element framework based on an a posteriori mesh deformation technique is developed to accurately discretise the underlying displacement-potential variational formulation. The performance of the method under near incompressibility and bending actuation scenarios is analysed with extremely thin and highly stretched components and compared to the performance of mixed variational principles recently reported by Gil and Ortigosa (Gil and Ortigosa, 2016; Ortigosa and Gil, 2016, 2016). Although convex multi-variable constitutive models are elliptic hence, materially stable for the entire range of deformations and electric fields, other forms of physical instabilities are not precluded in these models. In particular, physical instabilities present in dielectric elastomers such as pull-in instability, snap-through and the formation, propagation and nucleation of wrinkles and folds are numerically studied with a detailed precision in this paper, verifying experimental findings. For the case of small strains, the essence of the approach taken lies in guaranteeing the objectivity of the resulting work conjugates, by starting from the underlying convex multi-variable internal energy, whence avoiding the need for further symmetrisation of the resulting Maxwell and Minkowski-type stresses at small strain regime. In this context, the nonlinearity with respect to electrostatic counterparts such as electric displacements is still retained, hence resulting in a formulation similar but more competitive with the existing linearised electro-elasticity approaches. Virtual prototyping of many application-oriented dielectric elastomers are carried out with an eye on pattern forming in soft robotics and other potential medical applications. |
published_date |
2017-12-31T07:13:49Z |
_version_ |
1821388706184953856 |
score |
11.047501 |