Journal article 1127 views 173 downloads
Differential smoothness of skew polynomial rings
Journal of Pure and Applied Algebra, Volume: 222, Issue: 9, Pages: 2413 - 2426
Swansea University Author: Tomasz Brzezinski
-
PDF | Accepted Manuscript
Download (397.38KB)
DOI (Published version): 10.1016/j.jpaa.2017.09.020
Abstract
It is shown that, under some natural assumptions, the tensor product of differentially smooth algebras and the skew-polynomial rings over differentially smooth algebras are differentially smooth.
Published in: | Journal of Pure and Applied Algebra |
---|---|
ISSN: | 00224049 |
Published: |
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa34892 |
first_indexed |
2017-08-10T12:53:21Z |
---|---|
last_indexed |
2020-07-14T18:55:01Z |
id |
cronfa34892 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-07-14T15:14:51.7234013</datestamp><bib-version>v2</bib-version><id>34892</id><entry>2017-08-10</entry><title>Differential smoothness of skew polynomial rings</title><swanseaauthors><author><sid>30466d840b59627325596fbbb2c82754</sid><ORCID>0000-0001-6270-3439</ORCID><firstname>Tomasz</firstname><surname>Brzezinski</surname><name>Tomasz Brzezinski</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-08-10</date><deptcode>MACS</deptcode><abstract>It is shown that, under some natural assumptions, the tensor product of differentially smooth algebras and the skew-polynomial rings over differentially smooth algebras are differentially smooth.</abstract><type>Journal Article</type><journal>Journal of Pure and Applied Algebra</journal><volume>222</volume><journalNumber>9</journalNumber><paginationStart>2413</paginationStart><paginationEnd>2426</paginationEnd><publisher/><issnPrint>00224049</issnPrint><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1016/j.jpaa.2017.09.020</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-14T15:14:51.7234013</lastEdited><Created>2017-08-10T10:43:24.6415756</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Tomasz</firstname><surname>Brzeziński</surname><order>1</order></author><author><firstname>Christian</firstname><surname>Lomp</surname><order>2</order></author><author><firstname>Tomasz</firstname><surname>Brzezinski</surname><orcid>0000-0001-6270-3439</orcid><order>3</order></author></authors><documents><document><filename>0034892-10082017104608.pdf</filename><originalFilename>smooth_skew_rev.pdf</originalFilename><uploaded>2017-08-10T10:46:08.8670000</uploaded><type>Output</type><contentLength>351801</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-09-14T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-07-14T15:14:51.7234013 v2 34892 2017-08-10 Differential smoothness of skew polynomial rings 30466d840b59627325596fbbb2c82754 0000-0001-6270-3439 Tomasz Brzezinski Tomasz Brzezinski true false 2017-08-10 MACS It is shown that, under some natural assumptions, the tensor product of differentially smooth algebras and the skew-polynomial rings over differentially smooth algebras are differentially smooth. Journal Article Journal of Pure and Applied Algebra 222 9 2413 2426 00224049 31 12 2018 2018-12-31 10.1016/j.jpaa.2017.09.020 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2020-07-14T15:14:51.7234013 2017-08-10T10:43:24.6415756 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Tomasz Brzeziński 1 Christian Lomp 2 Tomasz Brzezinski 0000-0001-6270-3439 3 0034892-10082017104608.pdf smooth_skew_rev.pdf 2017-08-10T10:46:08.8670000 Output 351801 application/pdf Accepted Manuscript true 2018-09-14T00:00:00.0000000 true eng |
title |
Differential smoothness of skew polynomial rings |
spellingShingle |
Differential smoothness of skew polynomial rings Tomasz Brzezinski |
title_short |
Differential smoothness of skew polynomial rings |
title_full |
Differential smoothness of skew polynomial rings |
title_fullStr |
Differential smoothness of skew polynomial rings |
title_full_unstemmed |
Differential smoothness of skew polynomial rings |
title_sort |
Differential smoothness of skew polynomial rings |
author_id_str_mv |
30466d840b59627325596fbbb2c82754 |
author_id_fullname_str_mv |
30466d840b59627325596fbbb2c82754_***_Tomasz Brzezinski |
author |
Tomasz Brzezinski |
author2 |
Tomasz Brzeziński Christian Lomp Tomasz Brzezinski |
format |
Journal article |
container_title |
Journal of Pure and Applied Algebra |
container_volume |
222 |
container_issue |
9 |
container_start_page |
2413 |
publishDate |
2018 |
institution |
Swansea University |
issn |
00224049 |
doi_str_mv |
10.1016/j.jpaa.2017.09.020 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
It is shown that, under some natural assumptions, the tensor product of differentially smooth algebras and the skew-polynomial rings over differentially smooth algebras are differentially smooth. |
published_date |
2018-12-31T19:11:00Z |
_version_ |
1821343230661230592 |
score |
11.04748 |