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DIFFERENTIAL SMOOTHNESS OF SKEW POLYNOMIAL RINGS

TOMASZ BRZEZIŃSKI AND CHRISTIAN LOMP

Abstract. It is shown that, under some natural assumptions, the tensor product
of differentially smooth algebras and the skew-polynomial rings over differentially
smooth algebras are differentially smooth.

1. Introduction

The study of smoothness of algebras goes back at least to Grothendieck’s EGA. The
concept of a formally smooth commutative (topological) algebra introduced in there
[5, Définition 19.3.1] was later extended to the non-commutative case by Schelter in
[12]. An algebra is formally smooth if and only if the kernel of the multiplication
map is projective as a bimodule. As argued by Schelter himself, this notion arose
as a replacement of a far too general definition based on the finiteness of the global
dimension. Although it plays an important role in non-commutative geometry (see e.g.
[4], where such algebras are termed quasi-free), the notion of formal smoothness seems
to be too restrictive. The too crude notion of smoothness based on the finiteness of the
global dimensions was refined in [13], where a Noetherian algebra was said to be smooth
provided that it had a finite global dimension equal to the homological dimension of
all its simple modules. From the homological perspective probably most satisfying is
the notion of homological smoothness introduced in [14]: an algebra is homologically
smooth provided it admits a finite resolution by finitely generated projective bimodules.
Algebras of this kind display a Poincaré type duality between Hochschild homology
and cohomology, and retain many properties characteristic of co-ordinate algebras of
smooth varieties (see e.g. [8], where this last point is strongly argued for).

A different and more constructive approach to smoothness of algebras was taken
in [3]. In this approach the smoothness of an algebra A is related to the existence
of a specific differential graded algebra (with A as the degree-zero part) whose size is
aligned with the rate of growth of A measured by the Gelfand-Kirillov dimension, and
which satisfies a strict version of the Poincaré duality in terms of an isomorphism with
the corresponding complex of integral forms [2] (see Section 2 for precise definition). In
view of this direct use of differential graded algebras this kind of smoothness is referred
to as differential smoothness. The main advantage of this approach is its concreteness: a
differentially smooth algebra comes equipped with a well-behaved differential structure
and with the precisely defined concept of integration. Examples of differentially smooth
algebras include the coordinate algebras of the quantum group SUq(2), the quantum
2-sphere (see [2]), the non-commutative pillow algebra, the quantum cone algebras (see
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2 TOMASZ BRZEZIŃSKI AND CHRISTIAN LOMP

[3]), the quantum polynomial algebras (see [6]), and Hopf algebra domains of Gelfand-
Kirillov dimension 2 that are not PI (see [1]). Although many of these examples are
known to be also homologically smooth, the relationship between the differential and
other types of smoothness is not clear yet.

At the root of difficulties with comparing differential and other types of smooth-
ness is the constructive nature of the former, which prevents one from using functorial
or just existential arguments. In this paper we make a few steps toward resolving
such difficulties and present two general constructions which lead from differentially
smooth to differentially smooth algebras. First, we show that – under some natural as-
sumptions on differential structures and algebras – the tensor product of differentially
smooth algebras is differentially smooth. This allows one to deduce quickly smooth-
ness of polynomial and Laurent polynomial rings without necessity of constructing
a specific differential structure (it suffices to have such a structure for polynomials
in one variable). Second, again under some natural assumptions, we prove that the
skew-polynomial rings over a smooth algebra are smooth.

2. Preliminaries

Let F be a field. By a differential calculus over an F-algebra R we mean a differential
graded algebra (ΩR, d) (i.e. a graded algebra with the degree-one square-zero linear map
d : ΩR→ ΩR satisfying the graded Leibniz rule) such that:

(a) ΩR =
⊕

n∈N ΩnR, i.e. it is non-negatively graded, and Ω0R = R,

(b) For all n ∈ N,
ΩnR = Rd(R)d(R) · · · d(R)︸ ︷︷ ︸

n-times

.

The requirement (b) is called the density condition. A differential calculus (ΩR, d) over
R is said to be connected, provided ker (d |R) = F. It is said to have dimension N or
to be N-dimensional provided

ΩNR 6= 0 and ΩnR = 0, for all n > N.

An N -dimensional differential calculus (ΩR, d) over R is said to admit a volume form,
provided ΩNR is isomorphic to R as both a left and right R-module (but not necessarily
as an R-bimodule). Any free generator v of ΩNR as a right and left R-module is referred
to as a volume form. Associated to a volume form v are two maps:

(a) the right R-module co-ordinate isomorphism:

πv : ΩNR→ R, πv(vr) = r; (2.1)

(b) the twisting algebra automorphism:

θv : R→ R, r 7→ πv(rv). (2.2)

To any right R-linear homomorphism ϕ : ΩnR → R we associate a family of right
R-module maps

`kϕ : ΩkR→ HomR(Ωn−kR,R), γ 7→ [γ′ 7→ ϕ(γγ′)], k ∈ {0, 1, . . . , n}. (2.3)

The right R-multiplication on the space of right R-linear maps HomR(ΩkR,R) is de-
fined by (ψr)(γ) = ψ(rγ), for all ψ ∈ HomR(ΩkR,R), r ∈ R and γ ∈ ΩkR. The
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maps `kπv associated to a volume form co-ordinate isomorphism (2.1) are R-bimodule
homomorphisms, provided the left R-multiplication on HomR(ΩkR,R) is defined via
the twisting automorphism θv,

(rψ)(γ) = θv(r)ψ(γ).

Following [3] a differential calculus with a volume N -form v is said to be integrable
provided all bimodule homomorphisms `kπv , k ∈ {0, 1, . . . , N} are invertible. This is
equivalent to the existence of a complex of integrable forms [2] isomorphic to (ΩR, d)
(see [3, Theorem 2.2]). To relieve the notation we will write `kv or simply `k for `kπv . For
the future use we thus record that if v ∈ ΩNR is a volume form, then

`kv : ΩkR→ HomR(ΩN−kR,R), γ 7→ [γ′ 7→ πv(γγ
′)], k ∈ {0, 1, . . . , N}. (2.4)

Given an affine F-algebra R with generating subspace V , let us write V(n) for the
subspace of R spanned by 1 and all words in generators of R of length at most n. The
Gelfand-Kirillov dimension of R is a real number defined as

GKdim(A) := inf{t | dimV(n) ≤ nt, n� 0}, (2.5)

if it exists, and is defined as infinity otherwise. The Gelfand-Kirillov dimension of an
arbitrary F-algebra R is by definition the supremum of the Gelfand-Kirillov dimensions
of affine F-subalgebras of R (see [11, 8.1.16]). Although it is not generally true that
the Gelfand-Kirillov dimension of the tensor product of two algebras R, S is equal to
the sum of their (finite) Gelfand-Kirillov dimensions, it is, however, the case that if
GKdim(R) ≤ 2 or GKdim(S) ≤ 2, then

GKdim(R⊗ S) = GKdim(R) + GKdim(S);

see [9, Proposition 3.12]. We refer the reader to [9] or [11, Chapter 8] for a detailed
discussion of the Gelfand-Kirillov dimension, which, in the case of a commutative
Noetherian algebra is a very good measure of geometric dimension of the underlying
affine space.

The version of smoothness studied in the present text is recalled in the following

Definition 2.1 ([3]). An affine algebra R of integer Gelfand-Kirillov dimension N is
said to be differentially smooth, if there exists a connected, N -dimensional, integrable
differential calculus on R.

Let R be an algebra and σ an algebra automorphism of R. By a skew-polynomial
ring over R we mean the algebra R[z;σ] generated additionally by z and the relations
zr = σ(r)z, for all r ∈ R. Similarly the Laurent skew-polynomial ring R[z±1;σ] is
defined. As was the case for tensor product algebras, it is not generally true that
GKdim(R[z;σ]) = GKdim(R) + 1 (see [11, Example 8.2.16]). The equality holds,
whenever σ is locally algebraic, i.e. if for all r ∈ R, the set {σn(r) | n ∈ N} is contained
in a finite dimensional subspace of R (see [10, Proposition 1]).

As we will often make statements that apply equally well to the skew-polynomial
and the Laurent skew-polynomial rings, we reserve the symbol R[z•;σ] to denote either
R[z;σ] or R[z±1;σ].
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3. Differential smoothness of the tensor product of algebras

The aim of this section is to prove that, under some mild and geometrically natural
assumptions, tensor product of integrable differential calculi on two algebras gives an
integrable calculus on the tensor product algebra.

Suppose that (ΩR, dR), where ΩR =
⊕N

k=0 ΩkR, is an N -dimensional differential

calculus on an F-algebra R, and that (ΩS, dS), where ΩS =
⊕M

k=0 ΩkS, is an M -
dimensional differential calculus on an F-algebra S. Consider T := R⊗ S and

ΩT := ΩR⊗ ΩS =
N+M⊕
n=0


k∑
i=0

ΩiR⊗ Ωk−iS︸ ︷︷ ︸
=:ΩkT

 .

Components ΩiR, resp. ΩjS, are considered to be zero if i or j are not within their
limits. ΩT becomes a differential graded algebra, with graded multiplication defined
as

(ω ⊗ ν)(ω′ ⊗ ν) = (−1)|ν||ω
′|ωω′ ⊗ νν ′, (3.1)

for homogeneous elements ω, ω′, ν, ν ′, and extended differential dT of ΩT defined by

dT (ω ⊗ ν) := ω ⊗ dS(ν) + (−1)idR(ω)⊗ ν, (3.2)

for all ω ∈ ΩiR and ν ∈ ΩjS. By the density condition

ω =
∑
t

rt0dR(rt1) · · · dR(rti), ν =
∑
u

su0dS(su1) · · · dS(suj ),

hence, in view of (3.1) and (3.2),

ω ⊗ ν =
∑
t,u

(rt0 ⊗ su0)dT (rt1 ⊗ 1) · · · dT (rti ⊗ 1)dT (1⊗ su1) · · · dT (1⊗ suj ).

Therefore, the differential graded algebra (ΩT, dT ) is a differential calculus on T .

Proposition 3.1. Let R and S be algebras with integrable differential calculi (ΩR, dR)
and (ΩS, dS). Suppose that ΩR is a finitely generated projective right R-module and
that ΩS is a finitely generated projective right S-module. Then (ΩR ⊗ ΩS, d) is an
integrable differential calculus for R⊗ S.

Proof. We write T := R ⊗ S and assume that (ΩR, dR) has dimension N and
(ΩS, dS) has dimension M . Note that for homogeneous ω ⊗ ν ∈ ΩiR ⊗ Ωk−iS and
ω′ ⊗ ν ′ ∈ ΩjR⊗ Ωk′−jS we have

(ω ⊗ ν)(ω′ ⊗ ν ′) = (−1)(k−i)j ω ω′︸︷︷︸
∈Ωi+jR

⊗ ν ν ′︸︷︷︸
∈Ωk+k′−i−jS

∈ Ωk+k′T.

Since Ωi+jR = 0 for i+ j > N and ΩN+M−i−jS = 0 for i+ j < N , we have for all k:(
ΩiR⊗ Ωk−iS

) (
ΩjR⊗ ΩN+M−k−jS

)
= 0, ∀j 6= N − i.

This means in particular(
ΩiR⊗ Ωk−iS

)
ΩN+M−kT =

(
ΩiR⊗ Ωk−iS

) (
ΩN−iR⊗ ΩM−(k−i)S

)
, (3.3)

for all i ≤ k.
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Since ΩN+MT = ΩNR⊗ΩMS, for all ϕ1 ∈ HomR(ΩNR,R) and ϕ2 ∈ HomS(ΩMS, S),
ϕ := ϕ1⊗ϕ2 ∈ HomT (ΩN+MT, T ), and so we can consider the maps (2.3), `kϕ : ΩkT →
HomT (ΩN+M−kT, T ). By equation (3.3),

`kϕ
(
ΩiR⊗ Ωk−iS

)
⊆ HomT (ΩN−iR⊗ ΩM−(k−i)S, T ).

In particular

`kϕ(ω ⊗ ν)(ω′ ⊗ ν ′) = ϕ1(ωω′)⊗ ϕ2(ν ⊗ ν ′) = `iϕ1
(ω)(ω′)⊗ `k−iϕ2

(ν)(ν ′),

for all ω ∈ ΩiR,ω′ ∈ ΩN−iR, ν ∈ Ωk−iS, ν ′ ∈ ΩM−k+iS, where `iϕ1
and `k−iϕ2

are defined

by (2.3). Identifying `iϕ1
⊗ `k−iϕ2

∈ HomR(ΩiR,R)⊗HomS(Ωk−iS, S) with an element of

HomT (ΩiR⊗Ωk−iS, T ), we obtain `kϕ =
∑k

i=0 `
i
ϕ1
⊗`k−iϕ2

, since ΩkT =
⊕k

i=0 ΩiR⊗Ωk−iS.

Suppose that vR ∈ ΩNR and vS ∈ ΩMS are volume forms with corresponding co-
ordinate isomorphisms πvR : ΩNR → R and πvS : ΩNS → S. Then v = vR ⊗ vS is a
volume form for ΩN+MT with isomorphism πv = πvR ⊗πvS . We have already seen that

`kv =
∑k

i=0 `
i
vR
⊗ `k−ivS

, for all 0 < k < N +M .
By assumption the maps `ivR and `jvS are bijective for all 0 ≤ i, j ≤ k. Hence also

`ivR ⊗ `
k−i
vS

: ΩiR⊗ Ωk−iS −→ HomR(Ωn−iR,R)⊗ HomS(Ωm−(k−i)S, S),

is bijective for all 0 ≤ i ≤ k.
If ΩN−iR and ΩM−(k−i)S are finitely generated projective as right R-modules, re-

spectively as right S-modules, then by [15, 15.9],

HomR(ΩN−iR,R)⊗ HomS(ΩM−(k−i)S, S) = HomT (ΩN−iR⊗ ΩM−(k−i)S, T ),

and the maps `ivR ⊗ `
k−i
vS

between ΩiR⊗Ωk−iS and HomT (ΩN−iR⊗ ΩM−(k−i)S, T ) are
bijections. Thus

`kv :
k⊕
i=0

ΩiR⊗ Ωk−iS︸ ︷︷ ︸
ΩkT

∑
`ivR
⊗`k−i

vS−−−−−−−→
k⊕
i=0

HomR

(
ΩN−iR,R

)
⊗ HomS

(
ΩM−(k−i)S, S

)
︸ ︷︷ ︸

HomT (
⊕k

i=0 ΩN−iR⊗ΩM−(k−i)S,T)

is a bijection. Since

k⊕
i=0

ΩN−iR⊗ ΩM−(k−i)S =
N−k⊕
j=0

ΩjR⊗ ΩN+M−k−jS = ΩN+M−kT,

where components of ΩR or ΩS are zero if their degrees are not within the limits, we
eventually conclude that `kπ is a bijection between ΩkT and HomT (ΩN+M−kT, T ). tu

Proposition 3.1 yields

Corollary 3.2. If R and S are differentially smooth algebras with respect to calculi
which are finitely generated projective as right modules and

GKdim(R⊗ S) = GKdim(R) + GKdim(S),

then the tensor product algebra R⊗ S is differentially smooth.
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Proof. We only need to check whether the connectedness of ΩR and ΩS implies the
connectedness of ΩT . Let x =

∑
i,j αijri ⊗ sj ∈ ker dT ⊆ R ⊗ S, where the sets {ri}

and {sj} are linearly independent and αij ∈ F. If ΩR is connected, then in view of the
definition (3.2),

∑
i αijri is a scalar multiple of 1, for all j, i.e. x =

∑
j 1 ⊗ βjsj, for

some scalars βj. If, furthermore ΩS is connected, then the definition (3.2) implies that∑
j βjsj is a scalar multiple of 1, hence x is a scalar multiple of 1⊗ 1. Therefore, ΩT

is connected. The assertion then follows by Proposition 3.1. tu

Corollary 3.3. Let R be a differentially smooth algebra with respect to a differential
calculus ΩR that is finitely generated and projective over R. Then extensions of the
form R[x1, . . . , xn, y

±1
1 , . . . , y±1

m ] are also differentially smooth.

Proof. Both the polynomial algebra F[x] and the Laurent polynomial algebra F[y±1]
have Gelfand-Kirillov dimension one and are smooth. In the case of F[x] a connected
one-dimensional integrable differential calculus is (freely as a module) generated by the
volume one-form v = d(x) and the associated twisting automorphism θv(f(x)) = f(qx),
where q is any non-zero element of F (this determines fully the structure of ΩF[x] =
F[x] ⊕ Ω1F[x]). In the case of F[y±1], the volume form can be chosen as v = y−1d(y)
and then θv is the identity map. Since

R[x1, . . . , xn, y
±1
1 , . . . , y±1

m ] = R⊗ F[x1]⊗ . . .⊗ F[xn]⊗ F[y±1
1 ]⊗ . . .⊗ F[y±1

m ],

and GKdim (F[xi]) = GKdim
(
F[y±1

j ]
)

= 1 ≤ 2, the assertion follows by a repeated use
of Corollary 3.2 and [9, Proposition 3.12]. tu

4. Differential smoothness of skew-polynomial rings

The aim of this section is to prove the following

Theorem 4.1. Let R be a an algebra with an integrable differential calculus (ΩR, d)
such that ΩR is a finitely generated right R-module. For any automorphism σ of R
that extends to a degree-preserving automorphism of ΩR, which commutes with d, there
exists an integrable differential calculus (ΩA, d) on the skew-polynomial ring A = R[z;σ]
and the Laurent skew-polynomial ring A = R[z±1;σ]. If R is differentially smooth with
respect to (ΩR, d) and GKdim(A) = GKdim(R)+1, then A is also differentially smooth.

Recall that the trivial extension of an algebra A by an A-bimodule M is the algebra
B isomorphic to A⊕M as a vector space and with the multiplication

(a,m)(a′,m′) = (aa′, am′ +ma′), for all a, a′ ∈ A, m,m′ ∈M.

If ν is an automorphism of an algebra A, then we will denote by Aν , the A-bimodule
with the multiplication

a · b · a′ := abν(a′), for all a, a′, b ∈ A.

Furthermore, we write M [z] (respectively M [z±1]) for the direct sum of identical copies
of a bimodule M labelled by all natural numbers (resp. integers), with the elements
of the summand corresponding to n written as mzn, m ∈ M . As was the case of
skew-polynomial rings M [z•] denotes either M [z] or M [z±1].
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Lemma 4.2. Let (ΩR, d) be an N-dimensional differential calculus on an algebra R
and let σ be a degree-preserving automorphism of ΩR that commutes with d. Denote
also by σ the restriction of σ to R, and let S = ΩR[z•;σ] and A = R[z•;σ] be the
corresponding skew-polynomial rings. Define the automorphism σ of S by

σ(ωzn) = (−1)|ω|σ(ω)zn, (4.1)

for all homogeneous ω ∈ ΩR and integers n. Then the trivial extension ΩA = S ⊕ Sσ
is an N + 1-dimensional differential calculus on R[z•;σ] with differential

d(ωzn, νzm) =
(
d(ω)zn, (−1)|ω|ω∂z(z

n) + d(ν)zm
)
, (4.2)

for all homogeneous ω, ν ∈ ΩR, where ∂z denotes the (formal) derivative of polynomials.
The grading on ΩA is given by

|(ωzn, 0)| = |ω|, |(0, νzm)| = |ν|+ 1, (4.3)

for all homogeneous ω, ν ∈ ΩR with ν 6= 0.

Proof. Using the fact that the differential map d in ΩR raises degree of a form
by one, one easily checks that the map defined in (4.2) is square-zero. Note that, by
equation (4.2),

d(z, 0) = (0, 1),

hence the generator (0, 1) of the S-bimodule Sσ ⊂ ΩA can be denoted by dz, and
(ωzn, νzm) can be interpreted as the differential form ωzn + νzmdz. Using this inter-
pretation the equation (4.2) comes out as

d(ωzn + νzmdz) = d(ω)zn +
(
(−1)|ω|ω∂z(z

n) + d(ν)zm
)
dz. (4.4)

Furthermore, the multiplication in S ⊕ Sσ says concretely that, for all ν ∈ ΩkR,

(0, 1)(ωzn, 0) = (0, σ(ωzn)) = (0, (−1)|ω|σ(ω)zn),

meaning

dzωzn = (−1)|ω|σ(ω)zndz = σ(ωzn)dz. (4.5)

The structure of a trivial extension pays tribute to the fact that ΩAdz is a square-zero
ideal of the algebra of differential forms ΩA, hence

dzdz = 0. (4.6)

The equations (4.5) and (4.6) determine fully the algebra structure of ΩA.
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We need to check that the map d defined by (4.4) satisfies the graded Leibniz rule.
Let us take any homogeneous ω, ν ∈ ΩR and compute

d(ωznνzm) = d(ωσn(ν)zn+m)

= d(ωσn(ν))zn+m + (−1)|ω|+|ν|ωσn(ν)∂z(z
n+m)dz

= d(ω)σn(ν)zn+m + (−1)|ω|ωσn(d(ν))zn+m

+(−1)|ω|+|ν|ωσn(ν)(∂z(z
n)zm + zn∂z(z

m))dz

= d(ω)znνzm + (−1)|ω|ωznd(ν)zm

+(−1)|ω|+|ν|(ω∂z(z
n)σ(ν)zm + ωznν∂z(z

m))dz

=
(
d(ω)zn + (−1)|ω|ω∂z(z

n)dz
)
νzm

+(−1)|ω|ωzn
(
d(ν)zm + (−1)|ν|ν∂z(z

m)dz
)

= d(ωzn)νzm + (−1)|ω|ωznd(νzm),

where we used the definition of multiplication of the skew-polynomial algebra, (4.4)
and the fact that both d on ΩR and ∂z satisfy the (graded) Leibniz rule. Next

d(ωzndz νzm) = (−1)|ν|d(ωσn+1(ν)zn+mdz)

= (−1)|ν|d(ωσn+1(ν))zn+mdz

= (−1)|ν|[d(ω)σn+1(ν) + (−1)|ω|ωd(σn+1(ν))]zn+mdz

= d(ωzn)σ(νzm)dz + (−1)|ω|ωznσ(d(νzm))dz

= d(ωzndz) νzm + (−1)|ω|ωzndz d(νzm),

by (4.5) and (4.4). Finally we can compute:

d(ωzn νzmdz) = d(ωσn(ν)zn+mdz)

= d(ωσn(ν))zn+mdz

= [d(ω)σn(ν) + (−1)|ω|ωσn(d(ν))]zn+mdz

= d(ωzn)νzmdz + (−1)|ω|ωznd(νzmdz).

This proves that (ΩA, d) is a differential graded algebra. It is clear that ΩN+1A =
ΩNR[z•]dz 6= 0 and there are no components ΩnA if n > N + 1, hence (ΩA, d) has
dimension N+1. Since every element of (ΩA, d) can be written as a linear combination
of ωzn + νzmdz, with ω, ν ∈ ΩR and ΩR satisfies the density condition (over R), also
ΩA satisfies this condition (over A). Therefore, (ΩA, d) is an N+1-dimensional calculus
as claimed. tu

Lemma 4.3. In the set-up of Lemma 4.2 assume that (ΩR, d) has a volume N-form
v with the twisting automorphism θv and the co-ordinate isomorphism πv. Let u =
πv(σ(v)) and define the map

θ̄ : R[z•;σ]→ R[z•;σ],
∑
i

aiz
i 7→

∑
i

θv(ai)(uz)i. (4.7)

Then:

(1) The map θ̄ is an algebra automorphism of R[z•;σ].

(2) Ω (R[z•;σ]) has a volume form vdz with the twisting automorphism σ−1 ◦ θ̄.
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Proof. First note that there exists v ∈ R such that σ−1(v) = vv. Hence uσ(v) =
1 = vσ−1(u), i.e. u is invertible and the map θ̄ is well defined also in the Laurent case.
Furthermore θ̄ is invertible, with the inverse

θ̄−1 : R[z;σ]→ R[z;σ],
∑
i

aiz
i 7→

∑
i

θ−1
v (ai)(u

−1z)i.

Since, for all a ∈ R, av = vθv(a) and σ(v) = vπv(σ(v)) = vu,

vθv(σ(a))u = σ(a)vu = σ(a)σ(v) = σ(av) = σ(vθv(a)) = σ(v)σ(θv(a)) = vuσ(θv(a)).

Hence

θv(σ(a))u = uσ(θv(a))

holds for all a in R, and therefore

θ̄(z)θ̄(a) = uzθv(a) = uσ(θv(a))z = θv(σ(a))uz = θ̄(σ(a))θ̄(z),

and

θ̄(z−1)θ̄(a) = z−1u−1θv(a) = z−1σ(θv(σ
−1(a)))u−1

= θv(σ
−1(a))z−1u−1 = θ̄(σ−1(a))θ̄(z−1),

This implies that θ̄ is an algebra map and completes the proof of the first assertion.
To prove the second assertion, first let us write A for R[z•;σ]. As ΩNR = vR, we

have
(
ΩNR

)
[z•] = vA, and thus ΩN+1A =

(
ΩNR

)
[z•]dz = vAdz, i.e. any element

of ΩN+1A is of the form vfdz, for some f ∈ A. By (4.5), vfdz = vdzσ−1(f), hence
ΩN+1A = vdzA. Let f =

∑
aiz

i ∈ A be such that vdzf = 0, then vσ(f) = 0, which
implies f = 0. Thus ΩN+1A = vdzA is a free rank one right A-module. Moreover, for
any element f ∈ A,

fvdz = vθ̄(f)dz = vdzσ−1(θ̄(f)),

which also shows that Avdz = vdzA, and hence vdz is a free generator on both sides,
and that the twisting automorphism has the stated form. tu

Lemma 4.4. Let R ⊆ S be a ring extension and σ ∈ Aut(S) such that the restriction
of σ to R is an automorphism of R. Consider the skew-polynomial ring S[z•;σ] and its
subring R[z•;σ]. Let M be a σ-stable, right R-submodule of S and consider the right
R[z•;σ]-submodule M [z•] of S[z•;σ].

(1) The additive map ψ : HomR(M,R)[z•]→ HomR[z;σ] (M [z•], R[z•;σ]) given by

fzk 7→ ψfzk : [mzi 7→ σk(f(m))zk+i], ∀f ∈ HomR(M,R),

is well-defined and injective.
(2) If M is a finitely generated right R-module and σ(M) = M , then ψ is bijective.

Proof. (1) We will first show that ψfzk is a right R[z•;σ]-linear map. For all m ∈M ,
r ∈ R and i, j ∈ Z,

ψfzk(mzi)rzj = σk(f(m))zk+irzj

= σk(f(mσi(r)))zk+i+j = ψfzk
(
mσi(r)zi+j

)
= ψfzk

(
mzirzj

)
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If ψ∑
k fkz

k = 0 for some
∑

k fkz
k ∈ HomR(M,R)[z•], then, for all m ∈M ,∑

k

σk (fk (m)) zk = ψ∑
k fkz

k(m) = 0,

i.e. σk(fk(m)) = 0, for all k. Hence fk = 0 for all k, showing that ψ is injective.
(2) For any k, define an additive map

pk : R[z;σ]→ R, pk

(∑
riz

i
)

= σ−k(rk).

The maps pk are right R-linear, because

pk

(∑
riz

ir′
)

= pk

(∑
riσ

i(r′)zi
)

= σ−k(rk)r
′ = pk

(∑
riz

i
)
r′.

Suppose {b1, . . . , bn} is a generating set for MR. Let f ∈ HomR[z•;σ] (M [z•], R[z•;σ]).
There exist a finite indexing set I ⊂ Z and elements βik ∈ R, for 1 ≤ i ≤ n and
k ∈ I, such that f(bi) =

∑
k∈I βikz

k. For all k ∈ I, define right R-linear maps fk ∈
HomR(M,R) by the composition fk = pk ◦ f , i.e. fk(bi) = σ−k(βik), for all i. Let
m ∈M . There are λi ∈ R such that m =

∑n
i=1 biλi. Then, for any j,

f(mzj) =
n∑
i=1

f(bi)λiz
j =

∑
k∈I

n∑
i=1

βikz
kλiz

j

=
∑
k∈I

n∑
i=1

σk(fk(bi))σ
k(λi)z

k+j =
∑
k∈I

σk(fk(m))zk+j = ψ∑
k∈I fkz

k

(
mzj

)
.

Hence f = ψ
(∑

k∈I fkz
k
)
. tu

Corollary 4.5. Let σ be an automorphism of degree 0 of a graded algebra Ω =⊕∞
k=0 Ωk. Set R = Ω0. If Ωk is finitely generated as right R-module, then

HomR(Ωk, R)[z•] ' HomR[z•;σ](Ω
k[z•], R[z•;σ]).

With these assertions at hand we can now prove Theorem 4.1.

Proof of Theorem 4.1. Let us denote by v a volume form for ΩR, with the corre-
sponding co-ordinate isomorphism πv : ΩNR → R. By Lemma 4.3, vdz is a volume
form for the differential calculus ΩA on A = R[z•, σ] constructed in Lemma 4.2, and let
πvdz : ΩN+1A→ A be the corresponding co-ordinate isomorphism. For all ω ∈ ΩNR,

πvdz(ωz
idz) = πvdz (vπv(ω)dz) zi = σ−1(πv(ω))zi. (4.8)

Consider the maps `kv : ΩkR → HomR(ΩN−kR,R), `vdz : ΩkA → HomA(ΩN+1−kA,A)
associated to respective volume forms by (2.4). We canonically extend the `kv to maps
from ΩkR[z•] to HomR(ΩN−kR,R)[z•], by acting on the coefficients. To show that A is
differentially smooth, we need to show that the maps `kvdz : ΩkA→ HomA

(
ΩN−kA,A

)
are bijective. The bijectivity of `kvdz is clear for k = 0 or k = N+1, since vdz is a volume
form for ΩA. Let 1 ≤ k ≤ N and recall that ΩkA = (ΩkR)[z•]⊕(Ωk−1R)[z•]dz. It is not
difficult to see that the image of (ΩkR)[z•] under `kvdz lies in HomA(

(
ΩN−kR

)
[z•]dz,A),

while the image of (Ωk−1R)[z•]dz under `kvdz lies in HomA(
(
ΩN+1−kR

)
[z•], A).

For later use we define, for any i ∈ Z, invertible elements vi ∈ R, such that σi(v) =
viv. Then vi+jv = σi(σj(v)) = σi(vj)viv for any i, j ∈ Z, i.e. vi+j = σi(vj)vi from
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which it follows that σi(v−i) is the inverse of vi. The following equation shows the
commutation of σ and πv. Let ω ∈ ΩNR. Then

σ−i(πv(ω)) = πv(vσ
−i(πv(ω))) = πv(σ

−i(vivπv(ω))) = πv(σ
−i(viω)). (4.9)

Furthermore, the invertible elements vi give rise to a linear isomorphism

Φ : (Ωk−1R)[z•]dz → (Ωk−1R)[z•], ωzidz 7→ (−1)N−k+1σ−(i+1)(vi+1ω)zi.

Using equations (4.8) and (4.9) we compute, for all ωzi ∈ Ωk−1R[z•] and ω′zj ∈
ΩN−k+1R[z•],

`kvdz(ωz
idz)(ω′zj) = πvdz(ωz

idzω′zj) = (−1)|ω
′|πvdz(ωσ

i+1(ω′)zi+jdz)

= (−1)|ω
′|σ−1(πv(ωσ

i+1(ω′)))zi+j

= (−1)|ω
′|σi(σ−(i+1)(πv(ωσ

i+1(ω′))))zi+j

= (−1)|ω
′|σi(πv(σ

−(i+1)(vi+1ωσ
i+1(ω′))))zi+j

= (−1)|ω
′|σi(πv(σ

−(i+1)(vi+1ω)ω′)zi+j

= ψ(`k−1
v ((−1)|ω

′|σ−(i+1)(vi+1ωz
i)))(ω′zj)

= ψ(`k−1
v (Φ(ωzidz)))(ω′zj),

where ψ : HomR(ΩN−k+1R,R)[z•] → HomA

(
ΩN−k+1R[z•], A

)
is the homomorphism

from Lemma 4.4. Hence we have shown that the following diagram commutes:(
Ωk−1R

)
[z•]dz

`kvdz−−−→ HomA(ΩN+1−kR[z•], A)

Φ

y xψ(
Ωk−1R

)
[z•] −−−→

`k−1
v

HomR(ΩN+1−kR,R)[z•].

(4.10)

In a way similar to the definition of Φ we define the linear isomorphism Φ′ :
(
ΩkR

)
[z•]→(

ΩkR
)

[z•] by

Φ′(ωzi) = σ−(i+1)(vi+1ω)zi for all ω ∈ ΩkR.

Moreover, the map ϕ : ΩN−kR[z•]dz → ΩN−kR[z•], given by ϕ(ωzidz) = σ−1(ω)zi, is
an isomorphism of right A-modules. The adjoint map of ϕ is the isomorphism

ϕ∗ : HomA

(
ΩN−kR

)
[z•], A)→ HomA(ΩN−kR[z•]dz, A),

f 7→ f ◦ ϕ : [ωzidz 7→ f(σ−1(ω)zi)].

Using again equation (4.9), Φ′ and ϕ∗ we compute, for all ωzi ∈ ΩkR[z•], ω′zj ∈
ΩN−kR[z•],

`kvdz(ωz
i)(ω′zjdz) = πvdz(ωz

iω′zjdz) = πvdz(ωσ
i(ω′)zi+jdz)

= σ−1(πv(ωσ
i(ω′)))zi+j = σi(σ−(i+1)(πv(ωσ

i(ω′))))zi+j

= σi(πv(σ
−(i+1)(vi+1ωσ

i(ω′)))zi+j

= σi(πv(σ
−(i+1)(vi+1ω)σ−1(ω′)))zi+j

= ψ(`kv(σ−(i+1)(vi+1ω)zi))(σ−1(ω′)zj)

= ψ(`kv(Φ′(ωzi)))(ϕ(ω′zjdz)) = ϕ∗(ψ(`kv(Φ′(ωzi))))(ω′zjdz).
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Therefore, the following diagram commutes:(
ΩkR

)
[z•]

`kvdz−−−→ HomA(ΩN−kR[z•]dz,A)

Φ′

y xϕ∗◦ψ(
ΩkR

)
[z•] −−−→

`kv

HomR(ΩN−kR,R)[z•].

(4.11)

Assume for all k that the maps `kv are bijective and that the right R-modules ΩkR
are finitely generated. Then ψ is bijective by Corollary 4.5 and hence ψ ◦ `k−1

v ◦Φ and
ϕ∗ ◦ψ ◦ `kv ◦Φ′ are bijective maps. Since the diagrams (4.10) and (4.11) commute, also
`kvdz : ΩkA→ HomA(ΩN+1−kA,A) is bijective.

Finally, if ΩR is a connected calculus, then vanishing of the first component in (4.2),
implies that if d(f) = 0, for f =

∑
i aiz

i ∈ R[z•;σ], then f ∈ F[z•] (i.e. f has scalar
coefficients only). The second component in (4.2) is simply ∂z(f), hence it vanishes if
and only if f is a scalar multiple of the identity in A. Therefore, the calculus ΩA is
also connected. This completes the proof of the theorem. �

Example 4.6. For any non-zero q ∈ F, let us define Aq as an algebra generated by
x, y, z and relations

xy = yx, xz = qzy, yz = zx. (4.12)

The algebra Aq is differentially smooth. Similarly, the algebra Bq, generated by x, y
and invertible z subject to relations (4.12), is differentially smooth.

Proof. The algebras Aq and Bq are both skew-polynomial rings, Aq = F[x, y][z;σ],
Bq = F[x, y][z±1;σ], where the automorphism σ of F[x, y] is given by

σ(x) = y, σ(y) = qx.

The polynomial algebra F[x, y] is differentially smooth with the usual commutative
differential calculus Ω(F[x, y]),

xdx = dxx, xdy = dyx, ydx = dxy, ydy = dyy,

dxdy = −dydx, (dx)2 = (dy)2 = 0.

The automorphism σ extends to an automorphism of Ω(F[x, y]) by requesting it com-
mute with d, i.e.

σ(dx) = dy, σ(dy) = qdx.

Since Ω(F[x, y]) is finitely generated as a right F[x, y]-module and

GKdim(Aq) = GKdim(Bq) = 3 = GKdim(F[x, y]) + 1,

Theorem 4.1 yields the differential smoothness of Aq and Bq. tu

Remark 4.7. We notice in passing that B1 in Example 4.6 contains the down-up algebra
A(0, 1, 0) [7] as a proper subalgebra and hence the assertion of Example 4.6 can be a
starting point in determining whether A(0, 1, 0) is differentially smooth.

The statement of Theorem 4.1 can be iterated in the following way.
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Proposition 4.8. Let R be an algebra with an integrable differential calculus (ΩR, d)
such that ΩR is a finitely generated right R-module. Let σ be an automorphism of R
that extends to a degree-preserving automorphism of ΩR, which commutes with d. Let
(ΩA, d) be the integrable differential calculus on A = R[z•;σ] constructed via Theo-
rem 4.1.

(1) For any q ∈ F∗, the map σ extends to an automorphism of the differential graded
algebra (ΩA, d), by

σq : ΩA→ ΩA, ωf(z) 7→ σ(ω)f(qz), ωf(z)dz 7→ qσ(ω)f(qz)dz.

(2) If R is differentially smooth with respect to (ΩR, d) and GKdim(A) = GKdim(R)+
1, then A[t•;σq] = R[z•;σ][t•;σq] is also differentially smooth.

Proof. That σq is an algebra automorphism is established by a routine calculation.
To check that σq commutes with d, first observe that

∂z ◦ σq = q σq ◦ ∂z. (4.13)

Hence, for all f, g ∈ F[z•] and homogeneous ω, ν ∈ ΩR,

σq (d (ωf + νgdz)) = σ(dω)σq(f) + q
(
(−1)|ω|σ(ω)σq(∂z(f)) + σ(dν)σq(g)

)
dz

= d (σ(ω))σq(f) + (−1)|ω|σ(ω)∂z(σq(f))dz + d (σ(ν))σq(gdz)

= d (σq (ωf + νgdz)) ,

where the second equality follows by (4.13) and the fact that σ commutes with d. This
completes the proof of the first statement.

Since ΩR is finitely generated as a right R module and

ΩkA = ΩkR[z•;σ]⊕ Ωk−1R[z•;σ]σ̄,

also ΩA is finitely generated as a right A-module. ΩA is integrable of dimension
GKdim(R) + 1, hence, by Theorem 4.1 A[t•;σq] admits an integrable calculus of di-
mension GKdim(R) + 2. Furthermore, the automorphism σq is locally algebraic, hence
GKdim(A[t•;σq]) = GKdim(A) + 1 by [10, Proposition 1], and since GKdim(A) =
GKdim(R) + 1 the second assertion follows. tu

Proposition 4.8 leads to a quick proof of the differential smoothness of special cases
of algebras whose differential smoothness was established in [6].

Corollary 4.9. The coordinate algebra of the non-commutative n-dimensional affine
space, i.e. the algebra Fq[x1, . . . , xn] generated by x1, . . . , xn subject to the relations

xixj = qixjxi, for all i < j,

where q = (q1, . . . , qn−1) ∈ (F∗)n−1, is differentially smooth.

Proof. Fq[x1, . . . , xn] is an iterated skew polynomial ring. Starting with the poly-
nomial ring F[x1], which is differentially smooth by the usual commutative differential
structure, and applying first Theorem 4.1 and then its iteration Proposition 4.8 suffi-
ciently many times (with a different q at each step), we conclude that Fq[x1, . . . , xn] is
differentially smooth, as claimed. tu
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[3] T. Brzeziński & A. Sitarz, Smooth geometry of the noncommutative pillow, cones and lens spaces,
arXiv:1410.6587 to appear in J. Noncomm. Geom.

[4] J. Cuntz and D. Quillen, Algebra extensions and nonsingularity, J. Amer. Math. Soc. 8 (1995),
251–289.
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