No Cover Image

Journal article 1525 views 2800 downloads

Periodic boundary conditions of discrete element method-lattice Boltzmann method for fluid-particle coupling

Min Wang, Y. T. Feng, Yong Wang, T. T. Zhao, Yuntian Feng Orcid Logo

Granular Matter, Volume: 19, Issue: 3

Swansea University Author: Yuntian Feng Orcid Logo

Abstract

This paper presents a periodic boundary condition for the coupled discrete element and lattice Boltzmann method for simulating fluid-particle systems. Detailed implementation of this special boundary condition is given. Besides, the detailed procedure of immersed moving boundary scheme for fluid–sol...

Full description

Published in: Granular Matter
ISSN: 1434-5021 1434-7636
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa33143
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2017-05-02T19:04:58Z
last_indexed 2018-02-09T05:21:48Z
id cronfa33143
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2017-06-20T11:00:46.5721555</datestamp><bib-version>v2</bib-version><id>33143</id><entry>2017-05-02</entry><title>Periodic boundary conditions of discrete element method-lattice Boltzmann method for fluid-particle coupling</title><swanseaauthors><author><sid>d66794f9c1357969a5badf654f960275</sid><ORCID>0000-0002-6396-8698</ORCID><firstname>Yuntian</firstname><surname>Feng</surname><name>Yuntian Feng</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-05-02</date><deptcode>CIVL</deptcode><abstract>This paper presents a periodic boundary condition for the coupled discrete element and lattice Boltzmann method for simulating fluid-particle systems. Detailed implementation of this special boundary condition is given. Besides, the detailed procedure of immersed moving boundary scheme for fluid&#x2013;solid coupling is proposed. The accuracy and applicability of the proposed periodic boundary condition are well demonstrated by two benchmark tests, i.e. single particle transport and multiple particle migration in an infinite tube filled with water. It is found that the novel periodic boundary condition proposed for discrete element and lattice Boltzmann method can greatly improve the computational efficiency of the later which is computationally expensive when thousands of particles are involved.</abstract><type>Journal Article</type><journal>Granular Matter</journal><volume>19</volume><journalNumber>3</journalNumber><publisher/><issnPrint>1434-5021</issnPrint><issnElectronic>1434-7636</issnElectronic><keywords>Periodic boundary condition, Discrete element method, Lattice Boltzmann method, Fluid-particle coupling, Multi-phase flow</keywords><publishedDay>31</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-08-31</publishedDate><doi>10.1007/s10035-017-0733-6</doi><url/><notes/><college>COLLEGE NANME</college><department>Civil Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CIVL</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2017-06-20T11:00:46.5721555</lastEdited><Created>2017-05-02T14:48:18.2710698</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Min</firstname><surname>Wang</surname><order>1</order></author><author><firstname>Y. T.</firstname><surname>Feng</surname><order>2</order></author><author><firstname>Yong</firstname><surname>Wang</surname><order>3</order></author><author><firstname>T. T.</firstname><surname>Zhao</surname><order>4</order></author><author><firstname>Yuntian</firstname><surname>Feng</surname><orcid>0000-0002-6396-8698</orcid><order>5</order></author></authors><documents><document><filename>0033143-02062017113945.jpg</filename><originalFilename>Fig.1_IMB_SCHEME.jpg</originalFilename><uploaded>2017-05-02T14:53:08.1700000</uploaded><type>Output</type><contentLength>326737</contentLength><contentType>image/jpeg</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-05-24T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document><document><filename>0033143-02062017113959.jpg</filename><originalFilename>Fig.2_Boundary-TraceMethod.jpg</originalFilename><uploaded>2017-05-02T14:59:02.7930000</uploaded><type>Output</type><contentLength>349706</contentLength><contentType>image/jpeg</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-05-24T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document><document><filename>0033143-02062017114014.jpg</filename><originalFilename>Fig.3_PBCscheme.jpg</originalFilename><uploaded>2017-05-02T14:59:17.6600000</uploaded><type>Output</type><contentLength>533938</contentLength><contentType>image/jpeg</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-05-24T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document><document><filename>0033143-02062017114029.jpg</filename><originalFilename>Fig.4_Model.jpg</originalFilename><uploaded>2017-05-02T14:59:27.7530000</uploaded><type>Output</type><contentLength>109140</contentLength><contentType>image/jpeg</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-05-24T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document><document><filename>0033143-02062017114044.jpg</filename><originalFilename>Fig.5_Equilibrium.jpg</originalFilename><uploaded>2017-05-02T14:59:38.7670000</uploaded><type>Output</type><contentLength>118192</contentLength><contentType>image/jpeg</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-05-24T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document><document><filename>0033143-02062017114059.xlsx</filename><originalFilename>Fig.6_HorizontalMovement.xlsx</originalFilename><uploaded>2017-05-02T14:59:52.0430000</uploaded><type>Output</type><contentLength>67622</contentLength><contentType>application/vnd.openxmlformats-officedocument.spreadsheetml.sheet</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-05-24T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document><document><filename>0033143-02062017114114.xlsx</filename><originalFilename>Fig.7_VerticalMovement-Copy.xlsx</originalFilename><uploaded>2017-05-02T15:00:09.0470000</uploaded><type>Output</type><contentLength>325380</contentLength><contentType>application/vnd.openxmlformats-officedocument.spreadsheetml.sheet</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-05-24T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document><document><filename>0033143-02062017114132.jpg</filename><originalFilename>Fig.8_LargeModel.jpg</originalFilename><uploaded>2017-05-02T15:00:23.7870000</uploaded><type>Output</type><contentLength>153141</contentLength><contentType>image/jpeg</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-05-24T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document><document><filename>0033143-02062017114149.xlsx</filename><originalFilename>Fig.9_ComparisonOfVerticalMovement.xlsx</originalFilename><uploaded>2017-05-02T15:00:39.4500000</uploaded><type>Output</type><contentLength>167927</contentLength><contentType>application/vnd.openxmlformats-officedocument.spreadsheetml.sheet</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-05-24T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document><document><filename>0033143-02062017114204.jpg</filename><originalFilename>Fig.10_Proppant_migration.jpg</originalFilename><uploaded>2017-05-02T15:00:51.1370000</uploaded><type>Output</type><contentLength>1353960</contentLength><contentType>image/jpeg</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-05-24T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document><document><filename>0033143-02062017114217.xlsx</filename><originalFilename>Fig.11_ParticleDistribution.xlsx</originalFilename><uploaded>2017-05-02T15:01:00.9930000</uploaded><type>Output</type><contentLength>51428</contentLength><contentType>application/vnd.openxmlformats-officedocument.spreadsheetml.sheet</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-05-24T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document><document><filename>0033143-02062017114235.xlsx</filename><originalFilename>Fig.12_FinalDistribution.xlsx</originalFilename><uploaded>2017-05-02T15:01:12.6470000</uploaded><type>Output</type><contentLength>12958</contentLength><contentType>application/vnd.openxmlformats-officedocument.spreadsheetml.sheet</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-05-24T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document><document><filename>0033143-02052017145236.pdf</filename><originalFilename>wang2017(3).pdf</originalFilename><uploaded>2017-05-02T14:52:36.8900000</uploaded><type>Output</type><contentLength>448818</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-05-24T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2017-06-20T11:00:46.5721555 v2 33143 2017-05-02 Periodic boundary conditions of discrete element method-lattice Boltzmann method for fluid-particle coupling d66794f9c1357969a5badf654f960275 0000-0002-6396-8698 Yuntian Feng Yuntian Feng true false 2017-05-02 CIVL This paper presents a periodic boundary condition for the coupled discrete element and lattice Boltzmann method for simulating fluid-particle systems. Detailed implementation of this special boundary condition is given. Besides, the detailed procedure of immersed moving boundary scheme for fluid–solid coupling is proposed. The accuracy and applicability of the proposed periodic boundary condition are well demonstrated by two benchmark tests, i.e. single particle transport and multiple particle migration in an infinite tube filled with water. It is found that the novel periodic boundary condition proposed for discrete element and lattice Boltzmann method can greatly improve the computational efficiency of the later which is computationally expensive when thousands of particles are involved. Journal Article Granular Matter 19 3 1434-5021 1434-7636 Periodic boundary condition, Discrete element method, Lattice Boltzmann method, Fluid-particle coupling, Multi-phase flow 31 8 2017 2017-08-31 10.1007/s10035-017-0733-6 COLLEGE NANME Civil Engineering COLLEGE CODE CIVL Swansea University 2017-06-20T11:00:46.5721555 2017-05-02T14:48:18.2710698 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Min Wang 1 Y. T. Feng 2 Yong Wang 3 T. T. Zhao 4 Yuntian Feng 0000-0002-6396-8698 5 0033143-02062017113945.jpg Fig.1_IMB_SCHEME.jpg 2017-05-02T14:53:08.1700000 Output 326737 image/jpeg Accepted Manuscript true 2018-05-24T00:00:00.0000000 false eng 0033143-02062017113959.jpg Fig.2_Boundary-TraceMethod.jpg 2017-05-02T14:59:02.7930000 Output 349706 image/jpeg Accepted Manuscript true 2018-05-24T00:00:00.0000000 false eng 0033143-02062017114014.jpg Fig.3_PBCscheme.jpg 2017-05-02T14:59:17.6600000 Output 533938 image/jpeg Accepted Manuscript true 2018-05-24T00:00:00.0000000 false eng 0033143-02062017114029.jpg Fig.4_Model.jpg 2017-05-02T14:59:27.7530000 Output 109140 image/jpeg Accepted Manuscript true 2018-05-24T00:00:00.0000000 false eng 0033143-02062017114044.jpg Fig.5_Equilibrium.jpg 2017-05-02T14:59:38.7670000 Output 118192 image/jpeg Accepted Manuscript true 2018-05-24T00:00:00.0000000 false eng 0033143-02062017114059.xlsx Fig.6_HorizontalMovement.xlsx 2017-05-02T14:59:52.0430000 Output 67622 application/vnd.openxmlformats-officedocument.spreadsheetml.sheet Accepted Manuscript true 2018-05-24T00:00:00.0000000 false eng 0033143-02062017114114.xlsx Fig.7_VerticalMovement-Copy.xlsx 2017-05-02T15:00:09.0470000 Output 325380 application/vnd.openxmlformats-officedocument.spreadsheetml.sheet Accepted Manuscript true 2018-05-24T00:00:00.0000000 false eng 0033143-02062017114132.jpg Fig.8_LargeModel.jpg 2017-05-02T15:00:23.7870000 Output 153141 image/jpeg Accepted Manuscript true 2018-05-24T00:00:00.0000000 false eng 0033143-02062017114149.xlsx Fig.9_ComparisonOfVerticalMovement.xlsx 2017-05-02T15:00:39.4500000 Output 167927 application/vnd.openxmlformats-officedocument.spreadsheetml.sheet Accepted Manuscript true 2018-05-24T00:00:00.0000000 false eng 0033143-02062017114204.jpg Fig.10_Proppant_migration.jpg 2017-05-02T15:00:51.1370000 Output 1353960 image/jpeg Accepted Manuscript true 2018-05-24T00:00:00.0000000 false eng 0033143-02062017114217.xlsx Fig.11_ParticleDistribution.xlsx 2017-05-02T15:01:00.9930000 Output 51428 application/vnd.openxmlformats-officedocument.spreadsheetml.sheet Accepted Manuscript true 2018-05-24T00:00:00.0000000 false eng 0033143-02062017114235.xlsx Fig.12_FinalDistribution.xlsx 2017-05-02T15:01:12.6470000 Output 12958 application/vnd.openxmlformats-officedocument.spreadsheetml.sheet Accepted Manuscript true 2018-05-24T00:00:00.0000000 false eng 0033143-02052017145236.pdf wang2017(3).pdf 2017-05-02T14:52:36.8900000 Output 448818 application/pdf Accepted Manuscript true 2018-05-24T00:00:00.0000000 true eng
title Periodic boundary conditions of discrete element method-lattice Boltzmann method for fluid-particle coupling
spellingShingle Periodic boundary conditions of discrete element method-lattice Boltzmann method for fluid-particle coupling
Yuntian Feng
title_short Periodic boundary conditions of discrete element method-lattice Boltzmann method for fluid-particle coupling
title_full Periodic boundary conditions of discrete element method-lattice Boltzmann method for fluid-particle coupling
title_fullStr Periodic boundary conditions of discrete element method-lattice Boltzmann method for fluid-particle coupling
title_full_unstemmed Periodic boundary conditions of discrete element method-lattice Boltzmann method for fluid-particle coupling
title_sort Periodic boundary conditions of discrete element method-lattice Boltzmann method for fluid-particle coupling
author_id_str_mv d66794f9c1357969a5badf654f960275
author_id_fullname_str_mv d66794f9c1357969a5badf654f960275_***_Yuntian Feng
author Yuntian Feng
author2 Min Wang
Y. T. Feng
Yong Wang
T. T. Zhao
Yuntian Feng
format Journal article
container_title Granular Matter
container_volume 19
container_issue 3
publishDate 2017
institution Swansea University
issn 1434-5021
1434-7636
doi_str_mv 10.1007/s10035-017-0733-6
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering
document_store_str 1
active_str 0
description This paper presents a periodic boundary condition for the coupled discrete element and lattice Boltzmann method for simulating fluid-particle systems. Detailed implementation of this special boundary condition is given. Besides, the detailed procedure of immersed moving boundary scheme for fluid–solid coupling is proposed. The accuracy and applicability of the proposed periodic boundary condition are well demonstrated by two benchmark tests, i.e. single particle transport and multiple particle migration in an infinite tube filled with water. It is found that the novel periodic boundary condition proposed for discrete element and lattice Boltzmann method can greatly improve the computational efficiency of the later which is computationally expensive when thousands of particles are involved.
published_date 2017-08-31T03:40:47Z
_version_ 1763751857951342592
score 11.037056