Journal article 1590 views 261 downloads
Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry
D. J. Carrad,
Bernard Mostert
,
A. R. Ullah,
A. M. Burke,
H. J. Joyce,
H. H. Tan,
C. Jagadish,
P. Krogstrup,
J. Nygård,
Paul Meredith
,
A. P. Micolich
Nano Letters, Volume: 17, Issue: 2, Pages: 827 - 833
Swansea University Authors:
Bernard Mostert , Paul Meredith
-
PDF | Accepted Manuscript
Download (336.6KB)
DOI (Published version): 10.1021/acs.nanolett.6b04075
Abstract
A key task in the emerging field of bioelectronics is the transduction between ionic/protonic and electronic signalsat high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics and are bestsupported by very different materials types - electro...
Published in: | Nano Letters |
---|---|
ISSN: | 1530-6984 1530-6992 |
Published: |
American Chemical Society (ACS)
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa32365 |
first_indexed |
2017-03-09T20:01:20Z |
---|---|
last_indexed |
2020-06-26T18:42:34Z |
id |
cronfa32365 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-06-26T17:46:20.0190294</datestamp><bib-version>v2</bib-version><id>32365</id><entry>2017-03-09</entry><title>Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry</title><swanseaauthors><author><sid>a353503c976a7338c7708a32e82f451f</sid><ORCID>0000-0002-9590-2124</ORCID><firstname>Bernard</firstname><surname>Mostert</surname><name>Bernard Mostert</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>31e8fe57fa180d418afd48c3af280c2e</sid><ORCID>0000-0002-9049-7414</ORCID><firstname>Paul</firstname><surname>Meredith</surname><name>Paul Meredith</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-03-09</date><deptcode>BGPS</deptcode><abstract>A key task in the emerging field of bioelectronics is the transduction between ionic/protonic and electronic signalsat high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics and are bestsupported by very different materials types - electronic signals in inorganic semiconductors and ionic/protonic signals in organicor bio-organic polymers, gels, or electrolytes. Here we demonstrate a new class of organic−inorganic transducing interfacefeaturing semiconducting nanowires electrostatically gated using a solid proton-transporting hygroscopic polymer. This modelplatform allows us to study the basic transducing mechanisms as well as deliver high fidelity signal conversion by tapping into anddrawing together the best candidates from traditionally disparate realms of electronic materials research. By combiningcomplementary n- and p-type transducers we demonstrate functional logic with significant potential for scaling toward high densityintegrated bioelectronic circuitry.</abstract><type>Journal Article</type><journal>Nano Letters</journal><volume>17</volume><journalNumber>2</journalNumber><paginationStart>827</paginationStart><paginationEnd>833</paginationEnd><publisher>American Chemical Society (ACS)</publisher><issnPrint>1530-6984</issnPrint><issnElectronic>1530-6992</issnElectronic><keywords>III−V nanowires, bioelectronics, proton-to-electron transduction, hybrid organic/inorganic electronics</keywords><publishedDay>8</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-02-08</publishedDate><doi>10.1021/acs.nanolett.6b04075</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><degreesponsorsfunders>Australian Research Council</degreesponsorsfunders><apcterm/><lastEdited>2020-06-26T17:46:20.0190294</lastEdited><Created>2017-03-09T13:22:05.1318391</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Biosciences</level></path><authors><author><firstname>D. J.</firstname><surname>Carrad</surname><order>1</order></author><author><firstname>Bernard</firstname><surname>Mostert</surname><orcid>0000-0002-9590-2124</orcid><order>2</order></author><author><firstname>A. R.</firstname><surname>Ullah</surname><order>3</order></author><author><firstname>A. M.</firstname><surname>Burke</surname><order>4</order></author><author><firstname>H. J.</firstname><surname>Joyce</surname><order>5</order></author><author><firstname>H. H.</firstname><surname>Tan</surname><order>6</order></author><author><firstname>C.</firstname><surname>Jagadish</surname><order>7</order></author><author><firstname>P.</firstname><surname>Krogstrup</surname><order>8</order></author><author><firstname>J.</firstname><surname>Nygård</surname><order>9</order></author><author><firstname>Paul</firstname><surname>Meredith</surname><orcid>0000-0002-9049-7414</orcid><order>10</order></author><author><firstname>A. P.</firstname><surname>Micolich</surname><order>11</order></author></authors><documents><document><filename>0032365-09032017132357.pdf</filename><originalFilename>AcceptedFinalManuscript.pdf</originalFilename><uploaded>2017-03-09T13:23:57.0470000</uploaded><type>Output</type><contentLength>304849</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-01-05T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-06-26T17:46:20.0190294 v2 32365 2017-03-09 Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry a353503c976a7338c7708a32e82f451f 0000-0002-9590-2124 Bernard Mostert Bernard Mostert true false 31e8fe57fa180d418afd48c3af280c2e 0000-0002-9049-7414 Paul Meredith Paul Meredith true false 2017-03-09 BGPS A key task in the emerging field of bioelectronics is the transduction between ionic/protonic and electronic signalsat high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics and are bestsupported by very different materials types - electronic signals in inorganic semiconductors and ionic/protonic signals in organicor bio-organic polymers, gels, or electrolytes. Here we demonstrate a new class of organic−inorganic transducing interfacefeaturing semiconducting nanowires electrostatically gated using a solid proton-transporting hygroscopic polymer. This modelplatform allows us to study the basic transducing mechanisms as well as deliver high fidelity signal conversion by tapping into anddrawing together the best candidates from traditionally disparate realms of electronic materials research. By combiningcomplementary n- and p-type transducers we demonstrate functional logic with significant potential for scaling toward high densityintegrated bioelectronic circuitry. Journal Article Nano Letters 17 2 827 833 American Chemical Society (ACS) 1530-6984 1530-6992 III−V nanowires, bioelectronics, proton-to-electron transduction, hybrid organic/inorganic electronics 8 2 2017 2017-02-08 10.1021/acs.nanolett.6b04075 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University Australian Research Council 2020-06-26T17:46:20.0190294 2017-03-09T13:22:05.1318391 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Biosciences D. J. Carrad 1 Bernard Mostert 0000-0002-9590-2124 2 A. R. Ullah 3 A. M. Burke 4 H. J. Joyce 5 H. H. Tan 6 C. Jagadish 7 P. Krogstrup 8 J. Nygård 9 Paul Meredith 0000-0002-9049-7414 10 A. P. Micolich 11 0032365-09032017132357.pdf AcceptedFinalManuscript.pdf 2017-03-09T13:23:57.0470000 Output 304849 application/pdf Accepted Manuscript true 2017-01-05T00:00:00.0000000 true eng |
title |
Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry |
spellingShingle |
Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry Bernard Mostert Paul Meredith |
title_short |
Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry |
title_full |
Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry |
title_fullStr |
Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry |
title_full_unstemmed |
Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry |
title_sort |
Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry |
author_id_str_mv |
a353503c976a7338c7708a32e82f451f 31e8fe57fa180d418afd48c3af280c2e |
author_id_fullname_str_mv |
a353503c976a7338c7708a32e82f451f_***_Bernard Mostert 31e8fe57fa180d418afd48c3af280c2e_***_Paul Meredith |
author |
Bernard Mostert Paul Meredith |
author2 |
D. J. Carrad Bernard Mostert A. R. Ullah A. M. Burke H. J. Joyce H. H. Tan C. Jagadish P. Krogstrup J. Nygård Paul Meredith A. P. Micolich |
format |
Journal article |
container_title |
Nano Letters |
container_volume |
17 |
container_issue |
2 |
container_start_page |
827 |
publishDate |
2017 |
institution |
Swansea University |
issn |
1530-6984 1530-6992 |
doi_str_mv |
10.1021/acs.nanolett.6b04075 |
publisher |
American Chemical Society (ACS) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Biosciences{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Biosciences |
document_store_str |
1 |
active_str |
0 |
description |
A key task in the emerging field of bioelectronics is the transduction between ionic/protonic and electronic signalsat high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics and are bestsupported by very different materials types - electronic signals in inorganic semiconductors and ionic/protonic signals in organicor bio-organic polymers, gels, or electrolytes. Here we demonstrate a new class of organic−inorganic transducing interfacefeaturing semiconducting nanowires electrostatically gated using a solid proton-transporting hygroscopic polymer. This modelplatform allows us to study the basic transducing mechanisms as well as deliver high fidelity signal conversion by tapping into anddrawing together the best candidates from traditionally disparate realms of electronic materials research. By combiningcomplementary n- and p-type transducers we demonstrate functional logic with significant potential for scaling toward high densityintegrated bioelectronic circuitry. |
published_date |
2017-02-08T08:59:48Z |
_version_ |
1831900847299100672 |
score |
11.059359 |