Journal article 1519 views 208 downloads
Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency
Calculus of Variations and Partial Differential Equations, Volume: 55, Issue: 6
Swansea University Authors: Carlo Mercuri , Vitaly Moroz
-
PDF | Accepted Manuscript
Download (708.95KB)
DOI (Published version): 10.1007/s00526-016-1079-3
Abstract
We introduce a functional space which is suitable for the variational analysis of a class of semilinear elliptic equations involving nonlocal potentials, we study the embeddings into L^p spaces given by a new class of Gagliardo-Nirenberg type inequalities, and we prove existence of solutions in both...
Published in: | Calculus of Variations and Partial Differential Equations |
---|---|
ISSN: | 0944-2669 1432-0835 |
Published: |
2016
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa30794 |
first_indexed |
2016-10-24T04:25:06Z |
---|---|
last_indexed |
2020-07-14T18:49:11Z |
id |
cronfa30794 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-07-14T13:12:08.8616004</datestamp><bib-version>v2</bib-version><id>30794</id><entry>2016-10-23</entry><title>Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency</title><swanseaauthors><author><sid>46bf09624160610d6d6cf435996a5913</sid><ORCID>0000-0002-4289-5573</ORCID><firstname>Carlo</firstname><surname>Mercuri</surname><name>Carlo Mercuri</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>160965ff7131686ab9263d39886c8c1a</sid><ORCID>0000-0003-3302-8782</ORCID><firstname>Vitaly</firstname><surname>Moroz</surname><name>Vitaly Moroz</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-10-23</date><deptcode>MACS</deptcode><abstract>We introduce a functional space which is suitable for the variational analysis of a class of semilinear elliptic equations involving nonlocal potentials, we study the embeddings into L^p spaces given by a new class of Gagliardo-Nirenberg type inequalities, and we prove existence of solutions in both a radial and a nonradial setting.</abstract><type>Journal Article</type><journal>Calculus of Variations and Partial Differential Equations</journal><volume>55</volume><journalNumber>6</journalNumber><publisher/><issnPrint>0944-2669</issnPrint><issnElectronic>1432-0835</issnElectronic><keywords>Gagliardo-Nirenberg inequalities, embeddings, RIesz kernel, Schödinger-Poisson systems.</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-12-31</publishedDate><doi>10.1007/s00526-016-1079-3</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-14T13:12:08.8616004</lastEdited><Created>2016-10-23T19:54:38.6941855</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Carlo</firstname><surname>Mercuri</surname><orcid>0000-0002-4289-5573</orcid><order>1</order></author><author><firstname>Vitaly</firstname><surname>Moroz</surname><orcid>0000-0003-3302-8782</orcid><order>2</order></author><author><firstname>Jean Van</firstname><surname>Schaftingen</surname><order>3</order></author></authors><documents><document><filename>0030794-24102016185654.pdf</filename><originalFilename>NLSE-Poisson-CalcVar_final.pdf</originalFilename><uploaded>2016-10-24T18:56:54.5630000</uploaded><type>Output</type><contentLength>840481</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-11-04T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-07-14T13:12:08.8616004 v2 30794 2016-10-23 Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency 46bf09624160610d6d6cf435996a5913 0000-0002-4289-5573 Carlo Mercuri Carlo Mercuri true false 160965ff7131686ab9263d39886c8c1a 0000-0003-3302-8782 Vitaly Moroz Vitaly Moroz true false 2016-10-23 MACS We introduce a functional space which is suitable for the variational analysis of a class of semilinear elliptic equations involving nonlocal potentials, we study the embeddings into L^p spaces given by a new class of Gagliardo-Nirenberg type inequalities, and we prove existence of solutions in both a radial and a nonradial setting. Journal Article Calculus of Variations and Partial Differential Equations 55 6 0944-2669 1432-0835 Gagliardo-Nirenberg inequalities, embeddings, RIesz kernel, Schödinger-Poisson systems. 31 12 2016 2016-12-31 10.1007/s00526-016-1079-3 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2020-07-14T13:12:08.8616004 2016-10-23T19:54:38.6941855 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Carlo Mercuri 0000-0002-4289-5573 1 Vitaly Moroz 0000-0003-3302-8782 2 Jean Van Schaftingen 3 0030794-24102016185654.pdf NLSE-Poisson-CalcVar_final.pdf 2016-10-24T18:56:54.5630000 Output 840481 application/pdf Accepted Manuscript true 2017-11-04T00:00:00.0000000 true |
title |
Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency |
spellingShingle |
Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency Carlo Mercuri Vitaly Moroz |
title_short |
Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency |
title_full |
Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency |
title_fullStr |
Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency |
title_full_unstemmed |
Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency |
title_sort |
Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency |
author_id_str_mv |
46bf09624160610d6d6cf435996a5913 160965ff7131686ab9263d39886c8c1a |
author_id_fullname_str_mv |
46bf09624160610d6d6cf435996a5913_***_Carlo Mercuri 160965ff7131686ab9263d39886c8c1a_***_Vitaly Moroz |
author |
Carlo Mercuri Vitaly Moroz |
author2 |
Carlo Mercuri Vitaly Moroz Jean Van Schaftingen |
format |
Journal article |
container_title |
Calculus of Variations and Partial Differential Equations |
container_volume |
55 |
container_issue |
6 |
publishDate |
2016 |
institution |
Swansea University |
issn |
0944-2669 1432-0835 |
doi_str_mv |
10.1007/s00526-016-1079-3 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
We introduce a functional space which is suitable for the variational analysis of a class of semilinear elliptic equations involving nonlocal potentials, we study the embeddings into L^p spaces given by a new class of Gagliardo-Nirenberg type inequalities, and we prove existence of solutions in both a radial and a nonradial setting. |
published_date |
2016-12-31T04:04:34Z |
_version_ |
1821376799707234304 |
score |
11.047935 |