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GROUNDSTATES AND RADIAL SOLUTIONS
TO NONLINEAR SCHRÖDINGER–POISSON–SLATER EQUATIONS

AT THE CRITICAL FREQUENCY

CARLO MERCURI, VITALY MOROZ, AND JEAN VAN SCHAFTINGEN

Abstract. We study the nonlocal Schrödinger–Poisson–Slater type equation
−∆u+ (Iα ∗ |u|p)|u|p−2u = |u|q−2u in RN ,

where N ∈ N, p > 1, q > 1 and Iα is the Riesz potential of order α ∈ (0, N). We introduce
and study the Coulomb–Sobolev function space which is natural for the energy functional of
the problem and we establish a family of associated optimal interpolation inequalities. We
prove existence of optimizers for the inequalities, which implies the existence of solutions to the
equation for a certain range of the parameters. We also study regularity and some qualitative
properties of solutions. Finally, we derive radial Strauss type estimates and use them to prove
the existence of radial solutions to the equation in a range of parameters which is in general
wider than the range of existence parameters obtained via interpolation inequalities.
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1. Introduction

1.1. Setting of the problem. We study the Schrödinger–Poisson–Slater type equation
(SPS) −∆u+ (Iα ∗ |u|p)|u|p−2u = |u|q−2u in RN ,
where N ∈ N, p > 1, q > 1 and Iα : RN → R is the Riesz potential of order α ∈ (0, N), defined for
x ∈ RN \ {0} as

Iα(x) = Aα
|x|N−α

, Aα =
Γ(N−α2 )

Γ(α2 )πN/22α
.

The choice of normalisation constant Aα ensures that the kernel Iα enjoys the semigroup property
Iα+β = Iα ∗ Iβ for each α, β ∈ (0, N) such that α+ β < N,

see for example [46, pp. 73–74]. Since Iα ∗ ϕ→ ϕ as α→ 0 for all ϕ ∈ C∞c (RN ), the local equation
−∆u+ |u|2p−2u = |u|q−2u in RN

can be seen as a formal limit of (SPS) when α→ 0. Local equations of this type were studied, e.g.
in [21, 40]. Because for α ∈ (0, N) the Riesz potential Iα is the Green function of the fractional
Laplacian (−∆)α/2 (see for example [51, Section 5.1.1]), the system of equations{

−∆u+ v|u|p−2u = |u|q−2u,
(−∆)α/2v = up,

is formally equivalent to equation (SPS).
The nonlocal nonlinear Schrödinger equation, in natural units,

(1.1) i∂tψ = −∆ψ + Vext(x)ψ +
( 1

4π|x| ∗ |ψ|
2
)
ψ − |ψ|q−2ψ, (x, t) ∈ R3 × R,

and its stationary counterpart

(1.2) −∆u+ Vext(x)u+
( 1

4π|x| ∗ |u|
2
)
u = |u|q−2u, x ∈ R3,

appear in the physical literature as an approximation of the Hartree–Fock model of a quantum
many–body system of electrons under the presence of the external potential Vext, see [30] for a
mathematical introduction into Hartree–Fock method and further references therein. Within this
context equations (1.1) and (1.2) are known under the names of Schrödinger–Poisson–Slater [13],
Schrödinger–Poisson–Xα [6, 37], or Maxwell–Schrödinger–Poisson [9,18] equations. The function
|u|2 : R3 → R in equation (1.2) is the density of electrons in the original many–body system. The
nonlocal convolution term represents the Coulombic repulsion between the electrons. The local
term |u|q−2u was introduced by Slater [50] with q = 8/3 as a local approximation of the exchange
potential in the Hartree–Fock model [13,37]. The multidimensional version of Schrödinger–Poisson–
Slater equation in RN was proposed in [6], where the approximated exchange term corresponds to
q = 2 + 2/N . The equation (1.2) is also related to Thomas–Fermi–Dirac–von Weizsäcker (TFDW)
models of density functional theory [30, pp. 311–313].

From a physical point of view, the most relevant objects in the study of equation (1.2) are
minimisers and critical points of the energy J corresponding to (1.2), defined by

J (u) = 1
2

ˆ
R3
|Du|2 + 1

2

ˆ
R3
Vext|u|2 + 1

16π

¨
R3

|u(x)|2|u(y)|2

|x− y|
dy dx− 1

q

ˆ
R3
|u|q,

subject to a prescribed mass constraint ‖u‖2L2(R3) = m > 0. This leads to solutions of equation
(1.2) with a free Lagrange multiplier λ = λ(m),

(1.3) −∆u+
(
Vext(x) + λ

)
u+

( 1
4π|x| ∗ |u|

2
)
u = |u|q−2u, x ∈ R3,

while the ansatz ψ(x, t) = eiλtu(x) produces standing–wave solutions of the time–dependent
equation (1.1). Equation (1.3) where Vext + λ > 0 and λ is either a free Lagrange multiplier or
a fixed parameter had been extensively studied by many authors, see for example survey papers
[4, 18] for an extensive list of references.
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In the critical frequency case, when Vext + λ = 0, equation (1.3) becomes

(1.4) −∆u+
( 1

4π|x| ∗ |u|
2
)
u = |u|q−2u, x ∈ R3,

and had been studied by Ruiz [49] and Ianni and Ruiz [27]. Their results reveal a complex
mathematical structure behind (1.4). In particular, (1.4) admits a positive solution for 3 < q < 6
[27, Theorem 1.2] and radial positive solution for 18/7 < q < 3 [49, Theorem 1.3]. In addition,
[49, Theorem 1.4] shows that for 18/7 < q < 3 solutions of (1.3) with Vext ≡ 0 and λ→ 0 converge
to nontrivial solutions of (1.4). In other words, under some circumstances (1.4) plays a role of the
limit equation for (1.3) in the critical frequency régime λ→ 0.

In order to capture and to understand various mathematical features of Schrödinger–Poisson–
Slater equations with zero potential, we embed it in a wider class of equations (SPS) in arbitrary
space dimensions and with general parameters. As we point out later in the present introduction,
our analysis of the functional setting provides new insights on the significance of the exponents q = 3
and q = 18/7 and highlights new phenomena occurring at different ranges of the parameters. In
particular we identify several values of the parameters which play the role of critical thresholds for
continuous, and locally and globally compact embeddings of a natural functional space associated
with (SPS), as well as for the existence and the nonexistence of solutions.

1.2. Function spaces and interpolation inequalities. Equation (SPS) has a variational struc-
ture. Using the semigroup property of the Riesz potential, the energy functional that corresponds
to (SPS) can be written as

J∗(u) = 1
2

ˆ
RN
|Du|2 + 1

2p

ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2 − 1
q

ˆ
RN
|u|q.

Our first step in the study of Schrödinger–Poisson–Slater type equation (SPS) is to define a natural
energy space associated with the energy functional J∗. In Section 2 we define the Coulomb–Sobolev
space Eα,p(RN ) as the space of weakly differentiable function for which the norm

‖u‖Eα,p :=
(ˆ

RN
|Du|2 +

(ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2)1/p
)1/2

is finite. In the case N = 3, α = 2 and p = 2, this space has been studied by P.-L. Lions [33, Lemma
4; 35, (55)] and D.Ruiz [49, section 2]. From their works, it is known that E2,2(R3) is a uniformly
convex separable Banach space, that E2,2(R3) ⊂ Lq(RN ) for every q ∈ [3, 6) and the embedding
fails for q < 3. The proofs rely on the quadratic algebraic structure of the nonlocal term in the
case p = 2 and cannot be directly extended to a general p 6= 2. Note that both the norm ‖·‖Eα,p
and the energy J∗, can be considered for all p ≥ 1 and q ≥ 1, although for p = 1 or q = 1 the
interpretation of equation (SPS) as the Euler–Lagrange equation for J∗ becomes delicate.

In Section 2 we show that the Coulomb–Sobolev space Eα,p(RN ) is indeed a well defined Banach
space for a general set of parameters N ∈ N, α ∈ (0, N) and p ≥ 1. The space is uniformly convex
and reflexive for p > 1. We also show that L1

loc–convergence can efficiently replace the usual notion
of the weak convergence for p > 1 and that the subspace of smooth test functions C∞c (RN ) is dense
in Eα,p(RN ).

In Section 3 we study embedding properties of the space Eα,p(RN ). Our main result in that
section is a Gagliardo–Nirenberg type interpolation inequality for Coulomb–Sobolev spaces and
associated optimal embeddings into Lebesgue spaces.

Theorem 1 (Coulomb–Sobolev interpolation inequality). Let N ∈ N, α ∈ (0, N), p, q ∈ [1,+∞).
The space Eα,p(RN ) is continuously embedded in Lq(RN ) if and only if the following assumption
holds:

either 1
p
≥ (N − 2)+

N + α
and 1

2 −
1
N
≤ 1
q
≤ 1

2 −
p− 1
α+ 2p ,

or 1
p
<

(N − 2)+

N + α
and 1

2 −
1
N
≥ 1
q
≥ 1

2 −
p− 1
α+ 2p .

(Q)
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Moreover, if (Q) holds and α+N 6= p(N − 2) then there exists S = S(N,α, p, q) > 0 such that for
every u ∈ Eα,p(RN ) the interpolation estimate

(1.5) S
(ˆ

RN
|u|q
) 1
q ≤

(ˆ
RN
|Du|2

) θ
2
(ˆ

RN

(
Iα/2 ∗ |u|p

)2) 1−θ
2p

is valid with

(1.6) 1
q

= θ
(1

2 −
1
N

)
+ (1− θ)N + α

2Np
where

α

2p+ α
≤ θ ≤ 1 if N ≥ 2, α

2p+ α
≤ θ < 1 + α

1 + α+ p
if N = 1.

If N ≥ 3 and α + N = p(N − 2) then there exists C = C(N,α) > 0 such that for every
u ∈ Eα,

N+α
N−2 (RN ),

(1.7) C

ˆ
RN
|u|

2N
N−2 ≤

(ˆ
RN
|Du|2

) α
2+α
(ˆ

RN

∣∣Iα/2 ∗ |u|N+α
N−2

∣∣2) 2
2+α

.

In the cases N = 1 and N = 2 only the first option of condition (Q) occurs, while 1
2 −

1
N ≤

1
q

reduces to q < +∞, so the assumption (Q) reads as

p ≥ 1 and q ≥ 22p+ α

2 + α
.

The parameter θ in the interpolation estimate (1.5) can be computed explicitly in terms of the
exponent q as

θ =
N + α− 2pN

q

(N + α)− p(N − 2) , 1− θ =

2pN
q
− p(N − 2)

(N + α)− p(N − 2) .(1.8)

In the assumption (Q) the reader will recognize q = 2N
N−2 as the classical Sobolev critical exponent.

The exponent q = 2 2p+α
2+α is a new Coulomb–Sobolev critical exponent. This case corresponds to

estimate (1.5) with θ = α
2p+α , which reads as

(1.9) S2 2p+α
2+α

ˆ
RN
|u|2

2p+α
2+α ≤

(ˆ
RN
|Du|2

) α
2+α
(ˆ

RN
|Iα/2 ∗ |u|p|2

) 2
2+α

.

When N = 3, α = 2 and p = 2, the value q = 3 was already known to be Coulomb–Sobolev critical
[35, (55); 49, theorem 1.5]. Inequality (1.5) for N ∈ N, α ∈ (0, N) and p = 2 was obtained in
[7, proposition 2.1]. We emphasise that unlike the classical Hardy–Littlewood–Sobolev inequality

ˆ
RN

(
Iα/2 ∗ |u|p

)2 ≤ C( ˆ
RN
|u|

2Np
N+α

)N+α
N

,

inequality (1.5) is a lower bound on the Coulomb term and, via Young’s inequality, on the
‖ · ‖Eα,p–norm. The latter ensures the continuous embedding

Eα,p(RN ) ⊂ L2 2p+α
2+α (RN ).

In section 3 we also study weighted lower estimates on the Coulomb term. By homogeneity
considerations, a natural candidate would be

(1.10)
(ˆ

RN

|u(x)|p

|x|N−α
2

dx
)2
≤ C

ˆ
RN
|Iα/2 ∗ |u|p|2.

However, as already observed by Ruiz [49, section 3] this estimate cannot hold. In proposition 3.5
we show that a necessary condition on the weight W : RN → R for inequality

(1.11)
(ˆ

RN
W (x)|u(x)|p dx

)2
≤ C

ˆ
RN
|Iα/2 ∗ |u|p|2
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to hold for all u ∈ Eα,p(RN ) isˆ
RN\B2

W (x)
|x|N+α

2 (1 + |log|x||) 1
2 (1 + log(1 + |log|x||))δ

dx <∞

for every σ > 1
2 . This completes the study of Ruiz who showed when α = 2 that inequality (1.11)

does not hold when W (x) ≥ |x|−N−2
2 |log|x||β when β < 1

2 −
1
N [49, remark 3.3]. We also obtain a

family of weighted estimates (proposition 3.6), which as a particular case asserts that for γ < 1
2 ,(ˆ

RN

|u(x)|p

|x|N−α
2 (1 + |log|x||)γ

dx
)2
≤ C

ˆ
RN
|Iα/2 ∗ |u|p|2

for all u ∈ Eα,p(RN ). This particular inequality was established by Ruiz [49, theorem 3.1], but the
new proof we give is more direct.

1.3. Existence of groundstates. We prove the existence of optimizers for the Coulomb–Sobolev
inequalities except at the Coulomb–Sobolev critical exponent q = 2 2p+α

2+α and Sobolev critical
exponent q = 2N

N−2 .

Theorem 2 (Existence of optimizers). Let N ∈ N, α ∈ (0, N) and p, q ∈ [1,+∞) be such that the
following assumption holds:

either 1
p
>

(N − 2)+

N + α
and 1

2 −
1
N

<
1
q
<

1
2 −

p− 1
α+ 2p ,

or 1
p
<

(N − 2)+

N + α
and 1

2 −
1
N

>
1
q
>

1
2 −

p− 1
α+ 2p .

(Q′)

Then the best constant

(1.12) S := inf
u∈Eα,p(RN )\{0}

(´
RN |Du|

2
) θ

2
(´

RN
(
Iα/2 ∗ |u|p

)2) 1−θ
2p

(´
RN |u|q

) 1
q

where θ is given by (1.8), is achieved.

Existence of optimizers for (1.12) was previously established in [7, theorem 2.2] for N ∈ N,
α ∈ (0, N) and p = 2.

Existence of optimizers for the multiplicative minimization problem (1.12) is equivalent up to a
rescaling to the existence of optimizers for the constrained additive minimization problem

(1.13) Mc := inf
{
E∗(u)

∣∣ u ∈ Eα,p(RN ),
ˆ
RN
|u|q = c

}
,

where c > 0 and we denote

(1.14) E∗(u) = 1
2

ˆ
RN
|Du|2 + 1

2p

ˆ
RN
|Iα/2 ∗ |u|p|2.

The direct proof of the existence of optimizers for Mc which we give in theorem 8 provides some
additional understanding about the behaviour of minimizing sequences. In particular we show that
all the minimising sequences are relatively compact modulo translations, this result is in the spirit
of P.-L. Lions [34].

The multiplicative and additive minimization problems share up to a rescaling the same Euler–
Lagrange equation, in the sense that minimizers of (1.13) and, after a rescaling, minimizers of
(1.12) are weak solutions of the equation

(1.15) −∆u+ (Iα ∗ |u|p)|u|p−2u = µ|u|q−2u in RN ,

with an unknown Lagrange multiplier µ > 0, see section 5.2. If q 6= 2α+2p
α+2 then a rescaling of

solutions of (1.15) allows to get rid of the Lagrange multiplier and to obtain a solution of the
original equation (SPS). Solutions of (SPS) obtained as rescaled minimizers of (1.12) or (1.13)
are called in what follows groundstate solutions.
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The proof of theorem 2 relies on a “compactness up to translations” type lemma (lemma 5.1,
see also [32, p. 215]) and on a novel nonlocal Brezis–Lieb type lemma (proposition 4.1).

In contrast with its local counterpart [16], our nonlocal Brezis–Lieb lemma is an inequality:
we prove that if (un)n∈N converges to u : RN → R almost everywhere and if (Iα/2 ∗ |un|p)n∈N is
bounded in L2(RN ), then

(1.16) lim inf
n→∞

ˆ
RN

∣∣Iα/2 ∗ |un|p∣∣2 − ∣∣Iα/2 ∗ |un − u|p∣∣2 ≥ ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2.
This inequality is sufficient for the purpose of proving theorem 2.

It is natural to ask whether equality holds in the inequality (1.16), similarly to the classical local
Brezis–Lieb lemma. The answer is that equality holds if and only if (un)n∈N converges strongly to
u in Lploc(RN ) (proposition 4.3). This will be the case if (un)n∈N is bounded in some Lqloc(RN ) for
some q > p, allowing to recover a result of Moroz and Van Schaftingen when q = 2Np

N+α [42, lemma
2.4] and of Bellazzini, Frank and Visciglia when p = 2 and q > 2 [7, lemma 6.2].

One can also wonder whether a stronger assumption of boundedness in the Coulomb–Sobolev
Eα,p(RN ) could imply equality in (1.16), or equivalently strong compactness in Lploc(RN ). An
elementary local estimate on Riesz potentials (proposition 2.3) always ensures the local embedding
Eα,p(RN ) ⊂ Lploc(RN ). However, this embedding is compact if and only if p < 2α

α−2 . In fact,
for each α > 2 and p ≥ 2α

α−2 we construct a sequence of smooth functions which is bounded in
Eα,p(RN ), converges almost everywhere to zero and has Lp-norm which is bounded away from
zero. Functions in the sequence have uniformly bounded supports located around a d–dimensional
hypercube in RN with d > N − α (see lemma 3.4).

Going back to the question about equality in the Brezis–Lieb inequality (1.16), we obtain that
if α ≤ 2 or p < 2α

α−2 , and if the sequence (un)n∈N is bounded in the Coulomb–Sobolev space
Eα,p(RN ), then equality holds in (1.16). We show that this restriction is optimal by constructing
for every p ≥ 2α

(α−2)+
a sequence of smooth functions whose support concentrate to a bounded

Cantor–like set of positive Hα/2–capacity and vanishing Lebesgue measure (lemma 4.6) .
In section 5 we study some additional qualitative properties of solutions of (SPS) such as

regularity and positivity. The following theorem summarizes our findings.

Theorem 3 (Existence of groundstates). Let N ∈ N, α ∈ (0, N) and p, q ∈ (1,+∞).
Assume that assumption (Q′) holds. Then there exists a nontrivial nonnegative groundstate

solution u ∈ Eα,p(RN ) ∩ C2(RN ) to equation (SPS) and u ∈ C∞(RN \ u−1(0)). In addition, if
p ≥ 2 then u(x) > 0 for all x ∈ RN .

In the case N = 3, α = 2, p = 2 the existence of a positive solution to (SPS) was proved by
Ianni and Ruiz [27, theorem 1.2] using a mountain–pass type argument.

We do not know whether or not the restriction p ≥ 2 is essential for the positivity of groundstates.
We also do not know whether or not groundstate solutions obtained in Theorem 3 are radial. We
study the existence of radial groundstates separately.

1.4. Radial estimates and existence of radial groundstates. In section 6 we study the
embeddings of the subspace Eα,prad (RN ) of radially symmetric functions in Eα,p(RN ) into Lebesgue
spaces, in the spirit of the seminal result of Strauss [52] (see also [53,54]) and its counterpart for
some Coulomb–Sobolev spaces [49] (see also [8, 14, 39]). For α > 1 the radial embedding intervals
are wider then the intervals given by Theorem 1: the critical Coulomb–Sobolev exponent 2 2p+α

2+α is
replaced by a stronger critical exponent.

Theorem 4 (Radial embeddings). Let N ∈ N, α ∈ (0, N) and p, q ∈ [1,+∞).
If α ≤ 1, then Eα,prad (RN ) is embedded in Lq(RN ) if and only if Eα,p(RN ) is embedded in Lq(RN ).
If α > 1, then Eα,prad (RN ) is embedded in Lq(RN ) if and only if the following assumption holds:

either 1
p
≥ (N − 2)+

N + α
and 1

2 −
1
N
≤ 1
q
<

3N + α− 4
2(2p(N − 1) +N − α) ,

or 1
p
≤ (N − 2)+

N + α
and 1

2 −
1
N
≥ 1
q
>

3N + α− 4
2(2p(N − 1) +N − α) .

(Qrad)
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In this case, the interpolation estimate (1.5) is valid with θ given by (1.8).

The embedding E2,2
rad(R3) ⊂ Lq(R3) for q ∈ (18/7, 6] was established by Ruiz [49, theorem 1.2].

Ruiz also conjectured that E2,2
rad(R3) 6⊂ L18/7(R3) [49, remark 4.1].

The intervals of assumption (Qrad) are wider then intervals in (Q). As a consequence, for N ≥ 2,
α > 1 and c > 0 we establish the existence of optimizers for the radial minimization problem

(1.17) Mc,rad := inf
{
E∗(u)

∣∣ u ∈ Eα,prad (RN ),
ˆ
RN
|u|q = c

}
where the functional E∗ is defined by (1.14), for a range of q which is wider then the range
given in theorem 7. In particular, the existence range will include the Coulomb-Sobolev critical
exponent q = 2 2p+α

2+α where the Euler–Lagrange equation (1.15) should be interpreted as a nonlinear
eigenvalue problem rather then as an equation, since the Lagrange multiplier in (1.15) cannot be
scaled out. The following summarizes the results.

Theorem 5. Let N ≥ 2, α ∈ (0, N) and p, q ∈ [1,+∞). Assume that either α ≤ 1 and (Q′) holds,
or α > 1 and the following condition holds:

either 1
p
>

(N − 2)+

N + α
and 1

2 −
1
N

<
1
q
<

3N + α− 4
2(2p(N − 1) +N − α) ,

or 1
p
<

(N − 2)+

N + α
and 1

2 −
1
N

>
1
q
>

3N + α− 4
2(2p(N − 1) +N − α) .

(Q′rad)

Then the embedding Eα,prad (RN ) ⊂ Lq(RN ) is compact and the constrained minimization problem
(1.17) admits a nonnegative optimizer w ∈ Eα,prad (RN ). When α 6= 1 the conditions are also necessary
for the compactness of the embedding.

In addition, assume that p > 1. Then for q 6= 2 2p+α
2+α a rescaling of w solves equation (SPS),

while if q = 2 2p+α
2+α then w solves the eigenvalue problem

(1.18) −∆w + (Iα ∗ |w|p)|w|p−2w = qM1,rad|w|q−2w in RN .

Moreover, w ∈ C2(RN ), w ∈ C∞(RN \ w−1(0)) and w(|x|) → 0 as |x| → ∞. If p ≥ 2 then
w(|x|) > 0 for all x ∈ RN .

For N = 3, α = 2, p = 2 the above theorem was proved by Ruiz in [49, theorem 1.3] (case
q ∈ (18/7, 3)) and by Ianni and Ruiz [27, theorem 1.2 and theorem 1.3] (cases q ∈ (3, 6) and q = 3).

In the Coulomb–Sobolev critical case q = 2 2p+α
2+α the problem is invariant by scaling, in the sense

that if w is a solution of

(1.19) −∆u+ (Iα ∗ |u|p)|u|p−2u = qµ|u|q−2u in RN

for some µ > 0, then for every λ > 0 the function wλ(x) = λ−
α+2

2(p−1)w(x/λ) is also a solution of (1.19)
and E∗(wλ) ≡ E∗(w). In particular, the scale invariance implies that Mc ≡M1 and Mc,rad ≡M1,rad
for every c > 0 (see also (5.6)). Note that unless p = N+α

N−2 , the L
q–norm of wλ is not preserved

and the scale invariance does not lead to the nonuniqueness of the minimizer for Mc or Mc,rad. We
show in remark 7.2 that if q = 2 2p+α

2+α , p 6= N+α
N−2 and the pair (µ, u) ∈ R+ × Eα,p(RN ) \ {0} is a

solution of (1.19) then
µ ≥M1,

so that M1 could be seen as the least eigenvalue of (1.19). This further justifies that in the
Coulomb–Sobolev critical case (1.19) should be interpreted as an eigenvalue problem rather then
an equation.

1.5. Open questions. We close this introduction by listing several problems that are left open in
the present work.
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1.5.1. Radial versus non radial minimizers. Radial symmetry of the minimizer constructed in
theorem 2 is open. It is also unclear whether the optimal constants M1 and M1,rad share the same
value. A result in [49, theorem 1.7] shows that for N = 3, α = 2, p = 2 and q < 3 a breakup of
symmetry may occur when equation (SPS) is considered with Dirichlet boundary data on a ball
of sufficiently large radius. This construction however excludes the range of q where both M1 and
M1,rad are attained.

1.5.2. Uniqueness of the minimizers. Uniqueness up to translations of the minimizers constructed
in theorems 2 and 5 is open. If the minimizer for (1.12) was a nonradial function, then due to
rotations, we would have a strong non-uniqueness situation.

1.5.3. Positivity versus dead–cores for p < 2. Positivity of the groundstate solutions constructed in
theorems 2 and 5 is open for p < 2 and a-priori, the possibility of dead cores (regions in which the
solution vanishes) cannot be ruled out.

1.5.4. Radial compactness in the case α = 1 and q = 2
3 (2p+ 1). Compactness of the embedding

E1,p
rad(RN ) ⊂ L 2

3 (2p+1)(RN ) in the case (N − 2)p 6= N + 1 is open. If answered positively, this would
lead to the existence of a radial solution to the eigenvalue problem (1.18) in that case.

1.5.5. Double–critical case. The existence of optimizers in the double–critical case p = N+α
N−2 and

q = 2 2p+α
2+α = 2N

N−2 is open. Observe that in the particular case N ≥ 3 and α = 2 solutions of (1.15)
for p = N+2

N−2 and q = p+ 1 = 2N
N−2 can be formally constructed from the explicit radial groundstate

solutions U ∈ E2,p
rad(RN ) of the critical Emden–Fowler equation

−∆U = U
N+2
N−2 , U > 0 in RN .

Indeed, then I2 ∗ |U |
N+2
N−2 = U and therefore,

−∆U + (I2 ∗ U
N+2
N−2 )U

4
N−2 = 2U

N+2
N−2 in RN .

It is unclear however whether U is a groundstate of (SPS), i.e. if it is a minimizer of (1.17).

2. Coulomb–Sobolev spaces

2.1. Definition of Coulomb–Sobolev spaces.

Definition 1. Let N ∈ N, α ∈ (0, N) and p ≥ 1. We define the Coulomb space Qα,p(RN ) as the
vector space of measurable functions u : RN → R such that

‖u‖Qα,p :=
(ˆ

RN

∣∣Iα/2 ∗ |u|p∣∣2) 1
2p
<∞.

It can be observed that for every measurable function, u ∈ Qα,p(RN ) if and only if |u|p ∈
Qα,1(RN ). By the Hardy–Littlewood–Sobolev inequality [32, theorem 4.3] we haveˆ

RN

∣∣Iα/2 ∗ |u|p∣∣2 ≤ C(ˆ
RN
|u|

2Np
N+α

)N+α
N

and thus L
2Np
N+α (RN ) ⊂ Qα,p(RN ).

Proposition 2.1. Let N ∈ N, α ∈ (0, N) and p ≥ 1. Then ‖·‖Qα,p defines a norm.

Proof. By the classical integral weighted Minkowski inequality [32, theorem 2.4] we have for every
x ∈ RN , ∣∣(Iα/2 ∗ |u+ v|p)(x)

∣∣ 1
p ≤

∣∣(Iα/2 ∗ |u|p)(x)
∣∣ 1
p +

∣∣(Iα/2 ∗ |v|p)(x)
∣∣ 1
p .

By integrating and applying the Minkowski inequality in L2p(RN ) we conclude that(ˆ
RN

∣∣(Iα/2 ∗ |u+ v|p)
∣∣2) 1

2p ≤
(ˆ

RN

∣∣(Iα/2 ∗ |u|p)∣∣2) 1
2p +

(ˆ
RN

∣∣(Iα/2 ∗ |v|p)∣∣2) 1
2p
. �
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When p = 1 the norm ‖·‖Qα,1 is not generated by an inner product and does not coincide with the
α–energy norm of the classical potential theory. The latter is defined by ‖u‖Eα := ‖Iα/2 ∗ u‖L2(RN ),
see for example [46, pp. 80–81].

Definition 2. LetN ∈ N, α ∈ (0, N) and p ≥ 1. We define the Coulomb–Sobolev space Eα,p(RN ) as
the vector space of functions u ∈ Qα,p(RN ) such that u is weakly differentiable in RN , Du ∈ L2(RN )
and

‖u‖Eα,p :=
(ˆ

RN
|Du|2 +

(ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2)1/p
)1/2

<∞.

The function ‖·‖Eα,p defines a norm in view of proposition 2.1.

The space E2,2(R3) was introduced and studied by Ruiz [49, section 2].

2.2. Completeness of Coulomb–Sobolev spaces. It is not difficult to see that the Coulomb
space Qα,p(RN ) is not complete, as it contains Cauchy sequences vaguely converging to measures.
We are going to prove that the Coulomb–Sobolev space Eα,p(RN ) is a Banach space.

Proposition 2.2. For all N ∈ N, α ∈ (0, N) and p ≥ 1 the normed space Eα,p(RN ) is complete.

The first ingredient of the completeness is the following local estimate, which in particular
implies that Eα,p(RN ) ⊂ Lploc(RN ).

Proposition 2.3. For all N ∈ N, α ∈ (0, N) and p ≥ 1, there exists C > 0 such that for every
a ∈ RN and ρ > 0, ˆ

Bρ(a)
|u|p ≤ Cρ

N−α
2

(ˆ
Bρ(a)

∣∣Iα/2 ∗ |u|p∣∣2) 1
2
.

Proof. We observe that for every x ∈ Bρ(a),

(2ρ)−(N−α/2)
ˆ
Bρ(a)

|u|pdy ≤
ˆ
Bρ(a)

|u(y)|p

|x− y|N−α/2
dy ≤ C1

(
Iα/2 ∗ |u|p

)
(x).

The conclusion follows by integration. �

The second ingredient is the following Fatou property for locally converging sequences.

Proposition 2.4 (Fatou property). Let N ∈ N, α ∈ (0, N) and p ≥ 1. If (un)n∈N is a bounded
sequence in Eα,p(RN ) that converges to a function u : RN → R in L1

loc(RN ), then u ∈ Eα,p(RN ),ˆ
RN
|Du|2 ≤ lim inf

n→∞

ˆ
RN
|Dun|2

and ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2 ≤ lim inf
n→∞

ˆ
RN

∣∣Iα/2 ∗ |un|p∣∣2.
Moreover Dun ⇀ Du weakly in L2(RN ).

This property is known in the context of classical Sobolev spaces [59, theorem 6.1.7].

Proof. If ψ ∈ C1
c (RN ;RN ), then

−
ˆ
RN

udivψ = − lim
n→∞

ˆ
RN

un divψ = lim
n→∞

ˆ
RN

Dun · ψ,

and therefore by the Cauchy–Schwarz inequality∣∣∣ˆ
RN

udivψ
∣∣∣ ≤ lim inf

n→∞

(ˆ
RN
|Dun|2

) 1
2
(ˆ

RN
|ψ|2

) 1
2
.

By the Hahn–Banach theorem, the distribution Du induces then a linear functional on L2(RN ).
Therefore, by the Riesz representation theorem, there exists F ∈ L2(RN ;RN ) such that for every
ψ ∈ C1

c (RN ;RN ),

−
ˆ
RN

udivψ =
ˆ
RN

F · ψ,
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and ˆ
RN
|F |2 ≤ lim inf

n→∞

ˆ
RN
|Dun|2,

that is F = Du in the weak sense and Du satisfied the required estimate. From the fact that
F = Du it follows that Dun ⇀ Du weakly in L2(RN ).

Next we observe that by Fatou’s lemma, for almost every x ∈ RN holds(
Iα/2 ∗ |u|p

)
(x) ≤ lim inf

n→∞

(
Iα/2 ∗ |un|p

)
(x).

Hence, by Fatou’s lemma again,ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2 ≤ lim inf
n→∞

ˆ
RN

∣∣Iα/2 ∗ |un|p∣∣2. �

Proof of proposition 2.2. Let (un)n∈N be a Cauchy sequence in Eα,p(RN ). By Proposition 2.3,
(un)n∈N is also a Cauchy sequence in Lploc(RN ). Hence there exists u ∈ Lploc(RN ) such that
(un)n∈N converges to u in Lploc(RN ). In view of proposition 2.4 we conclude that u ∈ Eα,p(RN ).
Moreover, for every n ∈ N the sequence (un − um)m∈N converges to un − u in Lploc(RN ). Hence, by
proposition 2.4 again,ˆ

RN
|Dun −Du|2 +

ˆ
RN

∣∣Iα ∗ |un − u|p∣∣2 ≤ lim sup
m→∞

ˆ
RN
|Dun −Dum|2 +

ˆ
RN

∣∣Iα ∗ |un − um|p∣∣2.
Since (un)n∈N is a Cauchy sequence in Eα,p(RN ),

lim sup
n→∞

ˆ
RN
|Dun −Du|2 +

ˆ
RN

∣∣Iα ∗ |un − u|p∣∣2
≤ lim sup

n→∞
lim sup
m→∞

ˆ
RN
|Dun −Dum|2 +

ˆ
RN

∣∣Iα ∗ |un − um|p∣∣2
≤ lim sup

m,n→∞

ˆ
RN
|Dun −Dum|2 +

ˆ
RN

∣∣Iα ∗ |un − um|p∣∣2 = 0.

�

We complete this description of the completeness properties of Eα,p(RN ) with an embryonic
local compactness result.

Proposition 2.5 (Elementary local compactness). Let N ∈ N, α ∈ (0, N) and p ≥ 1. If (un)n∈N
is a bounded sequence in Eα,p(RN ), then there exists a subsequence (unk)k∈N that converges in
L1

loc(RN ).

Proof. By proposition 2.3 and Hölder inequality, the sequence of functions (un)n∈N is bounded in
L1

loc(RN ) and thus in W 1,1
loc (RN ). The conclusion then follows from the classical Rellich theorem

and a diagonal argument. �

2.3. Density of test functions in Coulomb–Sobolev spaces. We are going to show that
Coulomb–Sobolev space Eα,p(RN ) can be naturally identified with the completion of the set of
test functions C∞c (RN ) under the norm ‖·‖Eα,p .

Proposition 2.6 (Density of test functions). Let N ∈ N, α ∈ (0, N) and p ≥ 1. The space of test
functions C∞c (RN ) is dense in the Coulomb space Eα,p(RN ).

For N ≥ 3 this implies that the Coulomb–Sobolev space Eα,p(RN ) can be represented as

Eα,p(RN ) = Qα,p(RN ) ∩ D1,2(RN ),

where D1,2(RN ) is the homogeneous Sobolev space of weakly differentiable functions [59, definition
7.2.1]. Taking this as a definition would not allow to cover the low dimensions N ∈ {1, 2}, when
D1,2(RN ) is not defined.



SCHRÖDINGER–POISSON–SLATER EQUATIONS AT THE CRITICAL FREQUENCY 11

Proof of proposition 2.6. Let θ ∈ C∞(R) be a cut-off function such that |θ′| ≤ 1 on R, θ = 0 on
[−1, 1] and θ(t) = t if |t| ≥ 2. For n ∈ N, let θn(t) = θ(nt)/n. Choose a nonnegative radial test
function η ∈ C∞c (RN ) such that

´
RN η = 1 and supp η ⊂ B1 and set ηn(x) = nNη(nx). For a given

u ∈ Eα,p(RN ), define
un := θn ◦ (ηn ∗ u).

By proposition 2.3, u ∈ L1
loc(RN ) and therefore un is well-defined. By smoothing properties of the

convolution and by the chain rule, un ∈ C∞(RN ).
We are going to show that the support of un is compact. Observe that for each x ∈ RN , by

Hölder inequality and by proposition 2.3,

|ηn ∗ u(x)| ≤ CnN
ˆ
B1/n(x)

|u| ≤ Cn
N
p

(ˆ
B1/n(x)

|u|p
) 1
p ≤ C ′n

N+α
2p

(ˆ
B1/n(x)

∣∣Iα/2 ∗ |u|p∣∣2) 1
2p
.

Since
´
RN
∣∣Iα/2 ∗ |u|p∣∣2 <∞, we deduce therefrom that lim|x|→∞(ηn ∗ u)(x) = 0, and thus the set

supp(θn ◦ (ηn ∗ u)) is compact.
Moreover, since the function u is locally integrable and weakly differentiable, the sequence

(ηn ∗ u)n∈N converges to u in W 1,1
loc (RN ). By the properties of θn and by Lebesgue’s dominated

convergence theorem, it follows immediately that the sequence (un)n∈N converges to u inW 1,1
loc (RN ).

Since η is nonnegative, we observe that for every n ∈ N,ˆ
RN
|Dun|2 ≤

ˆ
RN
|D(ρn ∗ u)|2 ≤

ˆ
RN
|Du|2.

Since the sequence (Dun)n∈N converges to Du in measure, it follows that

lim
n→∞

ˆ
RN
|Dun −Du|2 = 0

(cf. [59, proposition 4.2.6]).
Next, by Fatou’s lemma, we have for every x ∈ RN ,

(2.1) lim inf
n→∞

(Iα/2 ∗ |un|p)(x) ≥ (Iα/2 ∗ |u|p)(x).

On the other hand, by Jensen’s inequality

Iα/2 ∗ |un|p ≤ Iα/2 ∗ |ρn ∗ u|p ≤ ρn ∗ (Iα/2 ∗ |u|p),

and hence

(2.2) lim sup
n→∞

ˆ
RN

∣∣Iα/2 ∗ |un|p∣∣2 ≤ ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2.
Therefore, we deduce from (2.1) and (2.2) that for almost every x ∈ RN ,

(2.3) lim
n→∞

(Iα/2 ∗ |un|p)(x) = (Iα/2 ∗ |u|p)(x),

and thus (see for example [59, proposition 4.2.6]), for every such x ∈ RN ,

lim
n→∞

(Iα/2 ∗ |un − u|p)(x) = 0.

We deduce also from (2.2) and (2.3) that

lim
n→∞

ˆ
RN

∣∣Iα/2 ∗ |un|p − Iα/2 ∗ |u|p∣∣2 = 0.

Finally, since

Iα/2 ∗ |un − u|p ≤ 2p−1Iα/2 ∗ (|u|p + |un|p) ≤ 2pIα/2 ∗ |u|p + 2p−1∣∣Iα/2 ∗ |un|p − Iα/2 ∗ |u|p∣∣,
we conclude by Lebesgue’s dominated convergence theorem. �

2.4. Further properties of Coulomb–Sobolev spaces.
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2.4.1. Uniform convexity and reflexivity. In order to study the uniform convexity of the Coulomb–
Sobolev space Eα,p(RN ), we first establish uniform convexity of the Coulomb space Qα,p(RN ).
The property will follow from the following inequalities.

Proposition 2.7 (Clarkson–Boas–Koskela inequalities). Let N ∈ N, α ∈ (0, N). If p, r, s ∈ (1,∞)
satisfy

r ≥ max
{

2p, p

p− 1 ,
s

s− 1

}
,

then for every u ∈ Qα,p(RN ),(ˆ
RN
|Iα/2 ∗ |u+ v|p|2

) r
2p +

(ˆ
RN
|Iα/2 ∗ |u− v|p|2

) r
2p

≤ 2r(1− 1
s )
((ˆ

RN
|Iα/2 ∗ |u|p|2

) s
2p +

(ˆ
RN
|Iα/2 ∗ |v|p|2

) s
2p
) r
s

.

Proof. The Clarkson–Boas–Koskela inequalities in uniformly convex spaces [36, theorem 3.2] (see
also [10, lemma 8.1; 11, theorem 2; 28, theorem 3]) states that for every U, V ∈ L2p(RN ;Lp(RN )),(ˆ

RN

(ˆ
RN
|U(x, y) + V (x, y)|p dy

)2
dx
) r

2p +
(ˆ

RN

(ˆ
RN
|U(x, y)− V (x, y)|p dy

)2
dx
) r

2p

≤ 2r(1− 1
s )
((ˆ

RN

(ˆ
RN
|U(x, y)|p dy

)2
dx
) s

2p +
(ˆ

RN

(ˆ
RN
|V (x, y)|p dy

)2
dx
) s

2p
) r
s

.

In particular, if we take U(x, y) = Iα(x − y)
1
pu(y) and V (x, y) = Iα(x − y)

1
p v(y), we reach the

conclusion. �

In particular, if p ≤ 3
2 one can take r = p

p−1 and s = p and we obtain

(2.4)
(ˆ

RN
|Iα/2 ∗ |u+ v|p|2

) 1
2(p−1) +

(ˆ
RN
|Iα/2 ∗ |u− v|p|2

) 1
2(p−1)

≤ 2
((ˆ

RN
|Iα/2 ∗ |u|p|2

) 1
2 +

(ˆ
RN
|Iα/2 ∗ |v|p|2

) 1
2
) 1
p−1

.

whereas when p ≥ 3
2 one can take r = 2p and s = 2p

2p−1 and we obtain

(2.5)
ˆ
RN
|Iα/2 ∗ |u+ v|p|2 +

ˆ
RN
|Iα/2 ∗ |u− v|p|2

≤ 2
((ˆ

RN
|Iα/2 ∗ |u|p|2

) 1
2p−1 +

(ˆ
RN
|Iα/2 ∗ |v|p|2

) 1
2p−1

)2p−1
.

An important consequence of these considerations is the uniform convexity of the Coulomb
spaces with p > 1.

Proposition 2.8. Let N ∈ N, α ∈ (0, N) and p ∈ (1,∞). Then Qα,p(RN ) is uniformly convex.

Proof. Follows immediately from the inequalities (2.4) and (2.5). �

Remark 2.1. Alternatively, one can observe that the map L : Qα,p(RN ) → L2p(RN ;Lp(RN ))
defined by

(2.6) (Lu)(x, y) =
(
Iα/2(x− y)

) 1
pu(y),

is a linear isometry from Qα,p(RN ) into L2p(RN ;Lp(RN )). Since the latter is uniformly convex
[10, §8; 11, theorem 2], its linear subspace L

(
Qα,p(RN )

)
⊂ L2p(RN ;Lp(RN )) is also uniformly

convex and thus the space Qα,p(RN ) is uniformly convex.



SCHRÖDINGER–POISSON–SLATER EQUATIONS AT THE CRITICAL FREQUENCY 13

Remark 2.2. When p ≥ 2, it is possible to deduce the uniform convexity directly from the classical
Lp Clarkson inequality. Since p ≥ 2, for every a, b ∈ R,

|a+ b|p + |a− b|p ≤ 2p−1(|a|p + |b|p
)
.

Hence, by linearity of the convolution and by positivity of the Riesz-kernel,ˆ
RN

∣∣Iα
2
∗ |u+ v|p + Iα

2
∗ |u− v|p

∣∣2 ≤ 22p−2
ˆ
RN

∣∣Iα
2
∗ |u|p + Iα

2
∗ |v|p

∣∣2.
Expanding the square and applying the Cauchy–Schwarz inequality then impliesˆ

RN

∣∣Iα
2
∗ |u+ v|p

∣∣2 +
ˆ
RN

∣∣Iα
2
∗ |u− v|p

∣∣2 ≤ 22p−1
(ˆ

RN

∣∣Iα
2
∗ |u|p

∣∣2 +
ˆ
RN

∣∣Iα
2
∗ |v|p

∣∣2).
This inequality was proved for p = 2 by D.Ruiz [49, p. 355] and follows directly from the stronger
inequality (2.5) by the discrete Hölder inequality.

The uniform convexity of the Coulomb space Qα,p(RN ) implies uniform convexity of the
Coulomb–Sobolev space Eα,p(RN ).

Proposition 2.9. Let N ∈ N, α ∈ (0, N) and p ∈ (1,∞). Then Eα,p(RN ) is uniformly convex.

It follows from proposition 2.9 that the space Eα,p(RN ) is reflexive [41] (see also for example
[15, theorem 3.31; 61, theorem V.2.2]).

Proof of proposition 2.9. We consider the map P : Eα,p(RN )→ Qα,p(RN )× L2(RN ;RN ) defined
by Pu = (u,Du) and we set

‖(u, U)‖Qα,p(RN )×L2(RN ;RN ) =
√
‖u‖2

Qα,p(RN ) + ‖U‖2
L2(RN ;RN ),

so that P in an isometry. By a general result on the product of uniformly convex spaces [20, theorem
3] (see also [49, lemma 2.3]), the space Qα,p(RN ) × L2(RN ;RN ) is uniformly convex and thus
Eα,p(RN ) is also uniformly convex. �

2.4.2. Weak convergence in Coulomb–Sobolev spaces. The above results allow to obtain a useful
characterization the weak convergence in Eα,p(RN ), which we are going to use extensively in the
sequel.

Proposition 2.10. Let N ∈ N, α ∈ (0, N) and p ∈ (1,∞). A sequence (un)n∈N in Eα,p(RN )
converges weakly to u ∈ Eα,p(RN ) if and only if it is bounded in Eα,p(RN ) and converges to u
strongly in L1

loc(RN ).

Proof. Since the space Eα,p(RN ) with p > 1 is reflexive, its unit ball is weakly compact. In view
of the compactness property of proposition 2.5, it suffices to show that if (un)n∈N converges weakly
to u in Eα,p(RN ) and converges strongly to ũ in L1

loc(RN ), then u = ũ almost everywhere.
To check this, we take ϕ ∈ Cc(RN ) and we define the linear functional `,

〈`, v〉 =
ˆ
RN

ϕv.

By proposition 2.3, ` is well-defined and continuous on Eα,p(RN ). Therefore,

lim
n→∞

ˆ
RN

ϕun =
ˆ
RN

ϕu.

On the other hand, we conclude immediately that

lim
n→∞

ˆ
RN

ϕun =
ˆ
RN

ϕũ.

Since ϕ ∈ Cc(RN ) is arbitrary, we conclude that u = ũ almost everywhere. �



SCHRÖDINGER–POISSON–SLATER EQUATIONS AT THE CRITICAL FREQUENCY 14

2.4.3. A characterization of the dual space. Since Qα,p(RN ) can be identified with a linear sub-
space of L2p(RN ;Lp(RN )) via isometry (2.6), any linear functional Qα,p(RN ) can be extended
to a linear functional on L2p(RN ;Lp(RN )), whose elements can be represented by functions in
L

2p
2p−1 (RN ;L

p
p−1 (RN )). This gives a representation of linear functionals on Qα,p(RN ).

Proposition 2.11. Let T be a distribution, then T ∈
(
Qα,p(RN )

)′ if and only if there exists
F : RN × RN → R such that ˆ

RN

(ˆ
RN
|F (x, y)|

p
p−1 dx

) 2(p−1)
2p−1 dy <∞

and for every ϕ ∈ C∞c (RN ),

〈T, ϕ〉 =
ˆ
RN

(ˆ
RN

F (x, y)Iα/2(x− y)
1
p dy

)
ϕ(x) dx.

This representation is still valid when p = 1, it should then be understood thatˆ
RN

(
ess supx∈RN |F (x, y)|

)2
<∞.

The representation of proposition 2.11 allows to represent the dual of Eα,p(RN ).
Proposition 2.12. Let T be a distribution, then T ∈ Qα,p(RN )′ if and only if there exists
F : RN × RN → R and G : RN → RN such thatˆ

RN
|G|2 +

ˆ
RN

(ˆ
RN
|F (x, y)|

p
p−1 dx

) 2(p−1)
2p−1 dy <∞.

and for every ϕ ∈ C∞c (RN ),

〈T, ϕ〉 =
ˆ
RN

G(x) · ∇ϕ(x) +
(ˆ

RN
F (x, y)Iα/2(x− y)

1
p dy

)
ϕ(x) dx.

3. Coulomb–Sobolev embeddings

In this section we prove theorem 1 and study local compactness properties of the embedding of
Coulomb–Sobolev spaces into Lebesgue spaces.

3.1. Continuous embedding into Lebesgue spaces and proof of theorem 1. In order to
prove theorem 1 we first establish the critical Coulomb–Sobolev inequality (1.9).
Proposition 3.1 (Coulomb–Sobolev inequality). Let N ∈ N, α ∈ (0, N) and p ≥ 1. There exists
C > 0 such that for every u ∈ Eα,p(RN ),

(3.1)
ˆ
RN
|u|2

2p+α
2+α ≤ C

(ˆ
RN
|Du|2

) α
2+α
(ˆ

RN
|Iα/2 ∗ |u|p|2

) 2
2+α

.

Proof. For every x ∈ RN and ρ > 0, we have [38, theorem 1.1.10/1] the estimate

|u(x)| ≤ C
(ˆ

Bρ(x)

|Du(y)|
|x− y|N−1 dy +

 
Bρ(x)

|u|
)
.

Since for N > 1
1

|x− y|N−1 = (N − 1)
ˆ ∞

0

χ{y : |x−y|<t}(y)
tN

dt,

by Fubini’s theorem and by the definition of the maximal function

Mf(x) := sup
ρ>0

 
Bρ(x)

|f(x)|dx,

we have ˆ
Bρ(x)

|Du(y)|
|x− y|N−1 dy = (N − 1)

ˆ
Bρ(x)

ˆ ∞
0

|Du(y)|χ{y : |x−y|<t}(y)
tN

dtdy

= (N − 1)
ˆ ρ

0

1
tN

(ˆ
Bt(x)

|Du|dy
)

dt ≤ C ′ρM|Du|(x).
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The same estimate is obviously true when N = 1. On the other hand, by Hölder’s inequality and
by definition of the Riesz potential Iα/2, 

Bρ(x)
|u| ≤

( 
Bρ(x)

|u|p
) 1
p ≤ C ′′

ρ
α
2p

(
Iα/2 ∗ |u|p(x)

) 1
p .

Therefore for every x ∈ RN ,

|u(x)| ≤ C ′′′
(
ρM|Du|(x) + ρ−

α
2p
(
Iα/2 ∗ |u|p(x)

) 1
p

)
.

If we take
ρ =

(Iα/2 ∗ |u|p(x)
M|Du|(x)

) 2p
2p+α

,

then
|u(x)| ≤ C ′′′′

(
M|Du|(x)

) α
2p+α

(
Iα/2 ∗ |u|p(x)

) 2
2p+α ,

and
|u(x)|2

2p+α
2+α ≤ C ′′′′′

(
M|Du|(x)

) 2α
2+α
(
Iα/2 ∗ |u|p(x)

) 4
2+α .

By integration and by Hölder’s inequality,ˆ
RN
|u|2

2p+α
2+α ≤ C ′′′′′

(ˆ
RN

(M|Du|)2
) 2

2+α
(ˆ

RN

(
Iα/2 ∗ |u|p

)2) α
2+α

.

By the classical maximal function theorem [51, theorem I.1], we conclude thatˆ
RN
|u|2

2p+α
2+α ≤ C ′′′′′′

(ˆ
RN
|Du|2

) α
2+α
(ˆ

RN

(
Iα/2 ∗ |u|p

)2) 2
2+α

. �

As a direct consequence of the critical Coulomb–Sobolev inequality (3.1) we obtain a pointwise
one–dimensional estimate. We give a proof for completeness, which could also be obtained by
invoking directly the classical homogeneous Gagliardo–Nirenberg interpolation inequality.

Theorem 6. Let α ∈ (0, 1) and p ≥ 1. There exists C > 0 such that for every u ∈ Eα,p(R),

sup
x∈R
|u(x)| ≤ C

(ˆ
R
|u′|2

) 1+α
2(1+α+p)

(ˆ
R
|Iα/2 ∗ |u|p|2

) 1
2(1+α+p)

.

Proof. We prove the inequality for u ∈ C∞c (R), the conclusion will follow by density. Let t = 2 2p+α
2+α ,

from the fundamental theorem of calculus and by the Cauchy-Schwarz inequality we have:

|u(x)|
t+2
2 ≤ t+ 2

2

ˆ x

−∞
|u| t2 |u′| ≤ C

(ˆ
R
|u|t
) 1

2
(ˆ

R
|u′|2

) 1
2
.

By Proposition 3.1, the integral of |u|t can be estimated and the theorem follows. �

Proof of theorem 1. We first assume that N = 1. Since q ≥ t = 2 2p+α
2+α , then( ˆ

R
|u|q
) 1
q =

(ˆ
R
|u|q−t+t

) 1
q ≤ ‖u‖1−

t
q

∞

(ˆ
R
|u|t
) 1
q

.

The statement easily follows by estimating the two factors, respectively, by theorem 6 and
proposition 3.1.

Assume that N ≥ 2. By the Gagliardo–Nirenberg interpolation inequality [24,44] and by the
Coulomb–Sobolev inequality (proposition 3.1), we have(ˆ

RN
|u|q
) 1
q ≤ C1

(ˆ
RN
|Du|2

)µ
2
(ˆ

RN
|u|2

2p+α
2+α

) 1−µ
2

2+α
2p+α

≤ C2

(ˆ
RN
|Du|2

) µ2p+α
2(2p+α)

(ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2) 1−µ
2p+α

,

with p, q ∈ [1,+∞), µ ∈ [0, 1] and
1
q

= µ
(1

2 −
1
N

)
+ (1− µ) 2 + α

2(2p+ α) .
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Then (1.5) follows with θ ∈
[

α
2p+α , 1

]
and

1
q

= θ
(1

2 −
1
N

)
+ (1− θ)N + α

2Np . �

Proposition 3.2 (Necessary condition for the embeddings). Let N ∈ N, α ∈ (0, N) and p ≥ 1. If
for every u ∈ C∞c (RN ),

(3.2)
(ˆ

RN
|u|q
) 1
q ≤ C

(ˆ
RN
|Du|2 +

(ˆ
RN

(
Iα/2 ∗ |u|p

)2) 1
p

) 1
2

,

then assumption (Q) holds.

Proof. Let u ∈ C∞c (RN ) \ {0}. For λ > 0, define the function uλ ∈ C∞c (RN ) by
uλ(x) = u(x/λ).

We compute ˆ
RN
|uλ|q = λN

ˆ
RN
|u|q,

ˆ
RN
|Duλ|2 = λN−2

ˆ
RN
|Du|2,

ˆ
RN

(
Iα/2 ∗ |uλ|p

)2 = λN+α
ˆ
RN

(
Iα/2 ∗ |u|p

)2
.

By (3.2), we have for every λ > 0,

λ
N
q ≤ c

(
λ
N−2

2 + λ
N+α

2p
)
.

We deduce therefrom that

min
{N − 2

2 ,
N + α

2p

}
≤ N

q
≤ max

{N − 2
2 ,

N + α

2p

}
,

which is weaker then (Q).
Assume that N + α 6= p(N − 2). Optimizing with respect to λ > 0 the quotient

(3.3) R(λ) :=

´
RN |Duλ|

2 +
(´

RN
(
Iα/2 ∗ |uλ|p

)2) 1
p

(´
RN |uλ|q

) 2
q

,

we see that R(λ) attains an optimal value at

(3.4) λ∗ = C∗


(´

RN
(
Iα/2 ∗ |u|p

)2) 1
p

´
RN |Du|2


p

(N−2)p−(N+α)

,

where C∗ = C∗(N,α, p, q). This leads to the estimate

(3.5)
(ˆ

RN
|u|q
)2
≤ C

(ˆ
RN
|Du|2

) q(N+α)−2pN
(N+α)−p(N−2)

(ˆ
RN

(
Iα/2 ∗ |u|p

)2) 2N−q(N−2)
(N+α)−p(N−2)

.

Given a vector a ∈ RN \ {0} and n ∈ N, define the function un,a ∈ C∞c (RN ) by

un,a(x) =
n∑
i=1

u(x+ ia).

Then

lim
|a|→∞

ˆ
RN
|Dun,a|2 = n

ˆ
RN
|Du|2,

lim
|a|→∞

ˆ
RN
|un,a|q = n

ˆ
RN
|u|q,
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lim
|a|→∞

ˆ
RN
|Iα/2 ∗ |un,a|p|2 = n

ˆ
RN
|Iα/2 ∗ |u|p|2.

Using the diagonal argument, from (3.5) we deduce that for all sufficiently large n ∈ N must hold

n2 ≤ C ′n
q(N+α)−2pN

(N+α)−p(N−2)n
2N−q(N−2)

(N+α)−p(N−2) ,

which implies (Q).
Next assume that N + α = p(N − 2). For λ > 0, consider the rescaling

uλ(x) = λ−
N−2

2 u(x/λ).

Substituting to (3.2) we obtain λ−
N−2

2 +N
q ≤ C, which requires q = 2N

N−2 . �

Remark 3.1. In the critical case q = 2 2p+α
2+α a rescaling of the sequence (un,a)n∈N is bounded but

not compact up to translations in Eα,p(RN ). In fact such a sequence is vanishing in the sense of
P.-L. Lions [34].

3.2. Local compactness in Lebesgue spaces. Since the functional space Eα,p(RN ) is invariant
under translations, the embedding Eα,p(RN ) into Lq(RN ) is never compact.

By theorem 1 and proposition 2.3, we have continuous embedding Eα,p(RN ) ⊂ Lqloc(RN ) for all
q ≥ 1 such that

1
q
≥ min

{1
2 −

1
N
,

1
p
,

2 + α

2(2p+ α)

}
.

We show that this embedding is compact if and only if the inequality is strict.

Proposition 3.3 (Local compactness in Lp). Let N ∈ N, α ∈ (0, N) and p ≥ 1. The embedding
Eα,p(RN ) ⊂ Lqloc(RN ) is compact if and only if

1
q
> min

{1
2 −

1
N
,

1
p
,

2 + α

2(2p+ α)

}
.

In particular, the embedding Eα,p(RN ) ⊂ Lploc(RN ) is compact if and only if

(3.6) 1
p
>
(1

2 −
1
α

)
+
.

Indeed, (3.6) is equivalent to 1
p >

2+α
2(2p+α) . Then by proposition 3.3 we should have either 1

p >
1
2−

1
N ,

or 1
p >

1
p , or

1
p >

1
2 −

1
α . The second condition can never be satisfied, and the third is weaker than

the first one since α < N .
We shall see later in lemma 4.6 that (3.6) is equivalent to the weak continuity of the map

u ∈ Eα,p(RN ) 7→ Iα/2 ∗ |u|p ∈ L2(RN ).

Proof of proposition 3.3. If the sequence of functions (un)n∈N is bounded in the Coulomb–Sobolev
space Eα,p(RN ), then passing to if necessary to a subsequence by proposition 2.5, (un)n∈N converges
strongly to a function u ∈ L1

loc(RN ). By theorem 1 and proposition 2.3, the sequence (un)n∈N is
bounded in Lq̄loc(RN ) for every q̄ such that

1
q̄
≥ min

{1
2 −

1
N
,

1
p
,

2 + α

2(2p+ α)

}
.

In particular, we can take q̄ > q. Then by the classical Hölder inequality we have for every compact
set K ⊂ RN , ˆ

K

|un − u|q ≤
(ˆ

K

|un − u|
) q̄−q
q̄−1
(ˆ

K

|un − u|q̄
) q−1
q̄−1

.

Therefore, the sequence (un)n∈N converges to u in Lqloc(RN ).
If p ≤ N+α

N−2 , then

min
{1

2 −
1
N
,

1
p
,

2 + α

2(2p+ α)

}
= 1

2 −
1
N
.
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In this case the lack of compact embedding from Eα,p(RN ) into L
2N
N−2
loc (RN ) can be seen by

considering, for a given function u ∈ C∞c (RN ) \ {0}, a sequence of functions (un)n∈N defined by

un(x) = n
N−2

2 u(nx).
Then supp(un) is uniformly bounded in RN , ‖un‖Eα,p = ‖u‖Eα,p

(
1 + o(1)

)
and ‖un‖L1 → 0 as

n→∞, but ‖un‖
L

2N
N−2

= ‖u‖
L

2N
N−2

.
If p > N+α

N−2 , then the lack of compact embedding from Eα,p(RN ) into Lqloc(RN ) is a consequence
of lemma 3.4 below. �

Lemma 3.4. Let N ≥ 3, α ∈ (0, N) and p > N+α
N−2 . There exists a sequence of functions (un)n∈N

in C∞c (RN ) such that supp(un) is uniformly bounded, (un)n∈N is bounded in Eα,p(RN ), un → 0
almost everywhere and, if α ≤ 2 or p ≤ 2α

α−2 ,

lim inf
n→∞

ˆ
RN
|un|2

2p+α
2+α > 0,

whereas if α > 2 and p > 2α
α−2 ,

lim inf
n→∞

ˆ
RN
|un|p > 0.

Proof. For R > 0, let QR = [−R,R]n be the cube in RN . Take a nonnegative w0 ∈ C∞c (Q1) \ {0}.
Fix an integer d ∈ {1, . . . , N} such that d > N − α. For n ∈ N∗ := N∪ {0} and ρn > N which will
be specified later, define the sequence of functions (wn)n∈N∗ ⊂ C∞c (RN ) by

wn(x) =
∑

a∈ρn{−n,...,n}d
w0(x− a).

We compute ˆ
RN
|Dwn|2 = (2n+ 1)d

ˆ
RN
|Dw0|2,

ˆ
RN
|wn|q = (2n+ 1)d

ˆ
RN
|w0|q,

while we estimate the Coulomb term asˆ
RN
|Iα/2 ∗ |wn|p|2

≤ (2n+ 1)d
ˆ
RN
|Iα/2 ∗ |w0|p|2 +

∑
a 6=b

a∈ρn{−n,...,n}d

b∈ρn{−n,...,n}d

ˆ
Q1

ˆ
Q1

Iα(x− y + a− b)|w0(x)|p|w0(y)|p dxdy

≤ (2n+ 1)d
ˆ
RN
|Iα/2 ∗ |w0|p|2 +

∑
a6=b

a∈ρn{−n,...,n}d

b∈ρn{−n,...,n}d

C

|a− b|N−α
(ˆ

RN
|w0|p

)2
.

Since N − α < d,∑
a 6=b

a∈ρn{−n,...,n}d

b∈ρn{−n,...,n}d

1
|a− b|N−α

= 1
ρN−αn

∑
a6=b

a∈{−n,...,n}d

b∈{−n,...,n}d

1
|a− b|N−α

≤ C

ρN−αn

ˆ
Qdn

ˆ
Qdn

1
|a− b|N−α

da db = Cn2d−(N−α)

ρN−αn

ˆ
Qd1

ˆ
Qd1

1
|a− b|N−α

da db,

where Qdn = [−n, n]d is the cube in Rd. Therefore, we estimate the Coulomb term byˆ
RN
|Iα/2 ∗ |wn|p|2 ≤ (2n+ 1)d

ˆ
RN
|Iα/2 ∗ |w0|p|2 + Cn2d−(N−α)

ρN−αn

(ˆ
RN
|w0|p

)2
.
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Set
ρn = n

d
N−α−1,

and define for λn > 0 the rescaled sequence

un(x) = wn

( x
λn

)
.

Then, as n→∞, ˆ
RN
|Dun|2 = λN−2

n (2n)d
(
1 + o(1)

) ˆ
RN
|Dw0|2,

ˆ
RN

(
Iα/2 ∗ |upn|

)2 = λN+α
n (2n)d

(
1 +O(1)

) ˆ
RN

(
Iα/2 ∗ |w0|p

)2
,

ˆ
RN
|un|q = λNn (2n)d

(
1 + o(1)

)ˆ
RN
|w0|q.

Assume that α ≤ 2 or p ≤ 2α
α−2 and let

q = 2α+ 2p
α+ 2 .

Taking into account (3.4), define

λn = n−
d(p−1)

(N−2)p−(N+α) .

Then we compute

lim
n→∞

‖un‖Eα,p
‖un‖Lq

= ‖w0‖Eα,p
‖w0‖Lq

> 0.

Note that Supp(un) ⊆ QRn , where

Rn = λn(nρn + 1) = n−
d(p−1)

(N−2)p−(N+α)n
d

N−α (1 + o(1)).

Therefore, we compute that

Rn → 1 if α > 2 and p = 2α
α− 2 ,

and

Rn → 0 if α ≤ 2 or N + α

N − 2 < p <
2α
α− 2 .

Moreover, it is clear that

|{x ∈ RN : un(x) 6= 0}| ≤ CλNn nd → 0,

so in both cases un → 0 almost everywhere in RN .

Next assume that α > 2 and p > 2α
α−2 . We set

q = p and λn := n−
d

N−α .

Since p > 2α
α−2 , we compute that

lim
n→∞

‖un‖Eα,p
‖un‖Lp

=
‖Iα/2 ∗ |w0|p‖1/pL2

‖w0‖Lp
> 0.

Note that Supp(un) ⊆ QRn , where

Rn = λn(nρn + 1) = n−
d

N−αn
d

N−α
(
1 + o(1)

)
= 1 + o(1).

Moreover, it is clear that un → 0 almost everywhere in RN . �
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3.3. Weighted Coulomb estimates. The goal of this section is to improve the Coulomb estimate
on balls of proposition 2.3 to global weighted estimates. By homogeneity considerations, a natural
candidate would be

(3.7)
ˆ
RN

|u(x)|p

|x|N−α
2

dx ≤
(ˆ

RN
|Iα/2 ∗ |u|p|2

) 1
2
.

However, as already observed by Ruiz [49, section 3], this estimate cannot hold.

Proposition 3.5. Let N ∈ N, α ∈ (0, N), p ≥ 1 and W : RN → R. If for every u in Eα,p(RN )ˆ
RN

W |u|p ≤
(ˆ

RN
|Iα/2 ∗ |u|p|2

) 1
2
,

then for any δ > 1
2 ,ˆ

RN

W (x)
|x|N+α

2 (1 + |log|x| |) 1
2
(
1 + log(1 + |log|x| |)

)δ dx <∞.

In particular, sinceˆ
RN

1
|x|N (1 + |log|x| |) 1

2 (1 + log(1 + |log|x| |))δ
dx =∞

for every δ ∈ R, the estimate (3.7) cannot hold.

Proof of proposition 3.5. Given δ > 0, we define the function u : RN → R for each x ∈ RN by

u(x) = 1
(log|x|)

1
2p (log(log|x|))

δ
p |x|

N+α
2p

χRN\B3(x).

Observe that for every x ∈ RN

|u(x)|p ≤ C
ˆ ∞

3

1
|x|N+α

2 ρ(log ρ) 3
2 (log log ρ)δ

χRN\Bρ(x) dρ.

Since for every x ∈ RN (
Iα/2 ∗ (I(N−α)/2χRN\Bρ)

)
(x) ≤ C ′

(|x|+ ρ)N2
,

we have

Iα/2 ∗ |u(x)|p ≤ CC ′
ˆ ∞

3

1
(|x|+ ρ)N2 ρ(log ρ) 3

2 (log log ρ)δ
dρ ≤ C ′′ 1

(log|x|) 1
2 (log log|x|)δ|x|N2

.

Therefore Iα/2 ∗ |u|p ∈ L2(RN ) as soon as δ > 1
2 . This implies thatˆ

RN\B3

W (x)
|x|N+α

2 (log|x|)(log log|x|)δ
dx <∞.

To obtain the condition around the origin, we define for δ > 0,

u(x) = 1
(log 1/|x|)

1
2p (log log 1/|x|)

δ
p |x|

N+α
2p

χB1/3(x). �

Although (3.7) does not hold, it is still possible to prove a scaling invariant inequality that
implies the local estimate on balls of proposition 2.3.

Proposition 3.6. Let N ∈ N, α ∈ (0, N), p ≥ 1. For every a ∈ RN ,ˆ ∞
0

( 
Bρ(a)

|u|p
)2
ρα+N−1 dρ ≤ C

ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2.
It is clear that proposition 3.6 implies proposition 2.3.
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Proof of proposition 3.6. For every x ∈ Bρ \Bρ/2, we have

ρ
α
2

 
Bρ

|u|p ≤ C
(
Iα/2 ∗ |u|p

)
(x)

Therefore, by integrating over Bρ \Bρ/2,

ρN+α
( 

Bρ

|u|p
)2
≤ C ′

ˆ
Bρ\Bρ/2

∣∣Iα/2 ∗ |u|p∣∣2.
Hence by integration and by Fubini’s theoremˆ ∞

0

( 
Bρ

|u|p
)2
ρα+N−1 dρ ≤ C ′

ˆ ∞
0

(ˆ
Bρ\Bρ/2

∣∣Iα/2 ∗ |u|p∣∣2) dρ
ρ

= C ′ ln 2
ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2. �

More generally, we can deduce from proposition 3.6 families of weighted estimates.

Proposition 3.7. Let N ∈ N, α ∈ (0, N), p ≥ 1 and w : (0,∞)→ R. If
ˆ ∞

0
ρ1+N−αw(ρ)2 dρ <∞

and W (ρ) =
´∞
ρ
w(r) dr, then(ˆ

RN
|u(x)|pW (|x|) dx

)2
≤ C

(ˆ ∞
0
|w(ρ)|2ρ1+N−α dρ

)(ˆ ∞
0

( 
Bρ

|u|p
)2
ρα+N−1 dρ

)
.

Observe that by the Cauchy–Schwarz inequality, we have

W (r) ≤
ˆ ∞
r

w(ρ) dρ ≤
(ˆ ∞

r

w(ρ)ρ1+N−α
) 1

2
(ˆ ∞

r

dρ
ρ1+N−α

) 1
2

≤ 1
√
N − α|x|N−α

2

(ˆ ∞
0

w(ρ)ρ1+N−α dρ
) 1

2
.

In particular, if we choose

W (ρ) = 1
ρ
N−α

2 (1 + |log ρ|)γ
,

with γ < 1
2 , then

(3.8)
(ˆ

RN

|u(x)|p

|x|N−α
2 (1 +

∣∣log|x|
∣∣)γ dx

)2
≤ C

ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2,
and we recover the inequality obtained by Ruiz for p = 2 [49, theorem 3.1]. By proposition 3.5, the
restriction γ < 1

2 is optimal for (3.8) to hold. This completes the study of Ruiz who has showed
that the inequality does not hold when p = 2 and γ < 1

2 −
1
N [49, remark 3.3].

Proof of proposition 3.7. Integrating by parts and using the Cauchy–Schwarz inequality, we obtain(ˆ
RN
|u(x)|pW (|x|) dx

)2
=
(ˆ

RN
|u(x)|p

ˆ ∞
|x|

w(ρ) dr dx
)2

= C ′
(ˆ ∞

0
w(ρ)ρN

 
Bρ

|u|p dρ
)2

≤ C
(ˆ ∞

0
|w(ρ)|2ρ1+N−α dρ

)(ˆ ∞
0

( 
Bρ

|u|p
)2
ρα+N−1 dρ

)
. �

In the sequel, we shall use the following particular case which gives a good practical substitute
to (3.7).
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Proposition 3.8. Let N ∈ N, α ∈ (0, N) and p ≥ 1. If β > N−α
2 , then for every u ∈ Qα,p(RN )

ˆ
RN\BR

|u(x)|p

|x|β
dx ≤ C

Rβ−
N−α

2

(ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2) 1
2
.

If β < N−α
2 , then for every u ∈ Qα,p(RN )

ˆ
BR

|u(x)|p

|x|β
dx ≤ CR

N−α
2 −β

(ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2) 1
2
.

In view of proposition 3.5, the restrictions on β are optimal.

Proof of proposition 3.8. For the first inequality we apply proposition 3.7 with the function w :
(0,∞)→ [0,∞) defined for ρ ∈ (0,∞) by

w(ρ) =
{

β
|x|β+1 if ρ ≥ R,
0 if ρ ≤ R.

The proof of the second inequality is similar. �

4. Nonlocal Brezis–Lieb lemma

4.1. General nonlocal Brezis–Lieb lemma. The main result of this section is the following
nonlocal Brezis–Lieb property.

Proposition 4.1 (Nonlocal Brezis–Lieb lemma). Let N ∈ N, α ∈ (0, N) and p ≥ 1. Assume that
(un)n∈N is a sequence of measurable functions from RN to R that converges to u : RN → R almost
everywhere. If the sequence (Iα/2 ∗ |un|p)n∈N is bounded in L2(RN ), then

lim
n→∞

ˆ
RN

∣∣∣∣∣Iα/2 ∗ |un|p∣∣2 − ∣∣Iα/2 ∗ (|un − u|p + |u|p)
∣∣2∣∣∣ = 0.

In particular,

(4.1) lim inf
n→∞

ˆ
RN

∣∣Iα/2 ∗ |un|p∣∣2 − ∣∣Iα/2 ∗ |un − u|p∣∣2
=
ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2 + 2 lim inf
n→∞

ˆ
RN

(Iα/2 ∗ |u|p)(Iα/2 ∗ |un − u|p) ≥
ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2,
that is, we have a Brezis–Lieb type inequality. Versions of the nonlocal Brezis–Lieb property with
equality were previously obtained in [1, 2, 7, 42,60].

We shall deduce proposition 4.1 from the following variant of the Brezis–Lieb lemma with mixed
norms.

Proposition 4.2 (Brezis–Lieb lemma with mixed norms). Let p ∈ (0,∞), q ∈ (0,∞), A ⊂ RN ,
B ⊂ RM be measurable sets, and (Un)n∈N be a sequence of measurable functions from A×B to R.
If the sequence (Un)n∈N converges almost everywhere to a function U : A×B → R and

sup
n∈N

ˆ
A

(ˆ
B

|Un(x, y)|p dy
)q

dx <∞,

then
lim
n→∞

ˆ
A

(ˆ
B

∣∣|Un(x, y)|p − |Un(x, y)− U(x, y)|p − |U(x, y)|p
∣∣dy)q dx = 0.

Proof. The proof follows the strategy of the original proof of the classical Brezis–Lieb lemma [16].
We first observe that by Fatou’s lemma,ˆ

A

(ˆ
B

|U(x, y)|p dy
)q

dx ≤
ˆ
A

(
lim inf
n→∞

ˆ
B

|Un(x, y)|p dy
)q

dx

≤ lim inf
n→∞

ˆ
A

(ˆ
B

|Un(x, y)|p dy
)q

dx <∞.
(4.2)
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Given ε > 0, there exists Cε > 0 such that if s, t ∈ R, then∣∣|s|p − |s− t|p − |t|p∣∣ ≤ ε|s|p + Cε|t|p.
Hence, for every n ∈ N and every (x, y) ∈ A×B,(∣∣|Un(x, y)|p − |Un(x, y)− U(x, y)|p − |U(x, y)|p

∣∣− ε|Un(x, y)|p
)

+ ≤ Cε|U(x, y)|p.

By (4.2), for almost every x ∈ A, we have U(x, ·) ∈ Lp(B), and thus by Lebesgue’s dominated
convergence theorem,

lim
n→∞

ˆ
B

(∣∣|Un(x, y)|p − |Un(x, y)− U(x, y)|p − |U(x, y)|p
∣∣− ε|Un(x, y)|p

)
+ dy = 0.

Moreover, for every n ∈ N, we haveˆ
B

(∣∣|Un(x, y)|p − |Un(x, y)− U(x, y)|p − |U(x, y)|p
∣∣− ε|Un(x, y)|p

)
+ dy ≤ Cε

ˆ
B

|U(x, y)|p dy.

Thanks to (4.2), we can apply a second time Lebesgue’s dominated convergence theorem to deduce
that

lim
n→∞

ˆ
A

( ˆ
B

(∣∣|Un(x, y)|p − |Un(x, y)− U(x, y)|p − |U(x, y)|p
∣∣− ε|Un(x, y)|p

)
+ dy

)q
dx = 0.

Finally, we observe thatˆ
A

( ˆ
B

∣∣|Un(x, y)|p − |Un(x, y)− U(x, y)|p − |U(x, y)|p
∣∣dy)q dx

≤
ˆ
A

(ˆ
B

(∣∣|Un(x, y)|p−|Un(x, y)−U(x, y)|p−|U(x, y)|p
∣∣−ε|Un(x, y)|p

)
++ε|Un(x, y)|p dy

)q
dx.

Hence if q ≥ 1, by the Minkowski inequality,

lim sup
n→∞

ˆ
A

( ˆ
B

∣∣|Un(x, y)|p − |Un(x, y)− U(x, y)|p − |U(x, y)|p
∣∣dy)q dx

≤ lim sup
n→∞

((ˆ
A

(ˆ
B

(∣∣|Un(x, y)|p − |Un(x, y)− U(x, y)|p − |U(x, y)|p
∣∣− ε|Un(x, y)|p

)
+ dy

)q
dx
) 1
q

+
( ˆ

A

(ˆ
B

ε|Un(x, y)|p dy
)q

dx
) 1
q
)q
≤ εq lim sup

n→∞

ˆ
A

(ˆ
B

|Un(x, y)|p dy
)q

dx,

whereas if q ≤ 1,

lim sup
n→∞

ˆ
A

( ˆ
B

∣∣|Un(x, y)|p − |Un(x, y)− U(x, y)|p − |U(x, y)|p
∣∣dy)q dx

≤ lim sup
n→∞

ˆ
A

(ˆ
B

∣∣|Un(x, y)|p − |Un(x, y)− U(x, y)|p − |U(x, y)|p
∣∣− ε|Un(x, y)|p

)
+ dy

)q
+
(ˆ

B

ε|Un(x, y)|p dy
)q

dx ≤ εq lim sup
n→∞

ˆ
A

(ˆ
B

|Un(x, y)|p dy
)q

dx,

Since ε > 0, is arbitrary, the conclusion follows in both cases. �

We are now in a position to prove the nonlocal Brezis–Lieb lemma.

Proof of proposition 4.1. We define the function Un : RN × RN → R and U : RN × RN → R for
every x, y ∈ RN and n ∈ N by Un(x, y) = Iα/2(x − y)1/pun(y) and U(x, y) = Iα/2(x, y)1/pu(y).
By assumption and by construction, the sequence (Un)n∈N converges almost everywhere to U in
RN × RN . Moreover, since the Riesz kernel Iα is nonnegative,

sup
n∈N

ˆ
RN

(ˆ
RN
|Un(x, y)|p dy

)2
= sup
n∈N

ˆ
RN

∣∣Iα/2 ∗ |un|p∣∣2 <∞.
Hence by proposition 4.2,

lim
n→∞

ˆ
RN

∣∣∣Iα/2 ∗ ∣∣|un|p − |un − u|p − |u|p∣∣∣∣∣2
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= lim
n→∞

ˆ
RN

(ˆ
RN

∣∣|Un(x, y)|p − |Un(x, y)− U(x, y)|p − |U(x, y)|p
∣∣dy)2

dx = 0.

By the Cauchy–Schwarz inequality,ˆ
RN

∣∣|Iα/2 ∗ (|un|p)|2 − |Iα/2 ∗ (|un − u|p + |u|p)|2
∣∣

=
ˆ
RN

∣∣∣Iα/2 ∗ (|un|p − |un − u|p − |u|p)
∣∣∣∣∣Iα/2 ∗ (|un|p + |un − u|p + |u|p)

∣∣
≤
(ˆ

RN

∣∣Iα/2 ∗ ∣∣|un|p − |un − u|p − |u|p∣∣∣∣2) 1
2
(ˆ

RN

∣∣Iα/2 ∗ (|un|p + |un − u|p + |u|p)
∣∣2) 1

2

and the conclusion follows. �

4.2. Refined nonlocal Brezis–Lieb identity. For our purpose the inequality (4.1) given by
proposition 4.1 will be sufficient. For comparison with existing results and further use, we give
some sufficient conditions for equality in (4.1).

We first obtain a general principle for equality.
Proposition 4.3. Let N ∈ N, α ∈ (0, N) and p ≥ 1. Assume that (un)n∈N is a sequence of
measurable functions from RN to R that converges to u : RN → R almost everywhere. If the
sequence (Iα/2 ∗ |un|p)n∈N is bounded in L2(RN ) and if u 6= 0, then the following conditions are
equivalent:

(i) lim
n→∞

ˆ
RN

∣∣∣∣∣Iα/2 ∗ |un|p∣∣2 − ∣∣Iα/2 ∗ |un − u|p∣∣2 − ∣∣Iα/2 ∗ |u|p∣∣2∣∣∣ = 0,

(ii) lim
n→∞

ˆ
RN

∣∣Iα/2 ∗ |un|p∣∣2 − ∣∣Iα/2 ∗ |un − u|p∣∣2 =
ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2,
(iii) the sequence (un)n∈N converges to u strongly in Lploc(RN ) ,
(iv) the sequence (|un|p)n∈N converges to |u|p in the sense of measures,
(v) the sequence (Iα/2 ∗ |un|p)n∈N converges to I ∗ |u|p weakly in L2(RN ).
The proof of proposition 4.3 will use the local Brezis–Lieb lemma.

Proposition 4.4 (Local Brezis–Lieb lemma). Let N ∈ N, p ≥ 1 and A ⊂ RN be a measurable
set. If the sequence (un)n∈N of measurable functions from A to R converges to u : RN → R almost
everywhere and if (un)n∈N is bounded in Lp(A), then

lim
n→∞

ˆ
A

∣∣|un|p − |un − u|p − |u|p∣∣ = 0.

This statement can be found in [31, lemma 2.6]. It might seem slightly stronger then the original
Brezis–Lieb lemma, but it is however a direct consequence of the original proof [16, theorem 2]
(see also [59, proof of theorem 4.2.7]). It also follows from proposition 4.2.

The proof of proposition 4.3 will also rely on the following classical continuity property of Riesz
potentials.
Proposition 4.5 (Weak continuity of Riesz potentials). Let N ∈ N and α ∈ (0, N). Assume
that (µn)n∈N is a sequence of signed Radon measures on RN that converges weakly to a signed
Radon measure µ. If the sequence (Iα/2 ∗ |µn − µ|)n∈N is bounded in L2(RN ), then the sequence
(Iα/2 ∗ µn)n∈N converges to Iα/2 ∗ µ weakly in L2(RN ).

In particular, if (µn)n∈N is a sequence of nonnegative measures then the sequence (Iα/2 ∗µn)n∈N
converges weakly in L2(RN ) if and only if it is bounded in L2(RN ).

Proposition 4.5 can be deduced directly from the weak convergence of the sequence (µn)n∈N in
the space Eα(RN ) of Radon measures ν ∈M(RN ) such that ‖ν‖Eα := ‖Iα/2 ∗ ν‖L2 <∞ [46, §3.4
and lemma 3.12].

Proof of proposition 4.5. Let ϕ ∈ Cc(RN ). Let η ∈ Cc(RN ) such that η = 1 on B1 and define
ηR(x) = η(x/R). For every n ∈ N and every R > 0, we haveˆ

RN

(
Iα/2 ∗ (µn − µ)

)
ϕ =

ˆ
RN

ηR
(
Iα/2 ∗ ϕ

)
(µn − µ) +

ˆ
RN

(
Iα/2 ∗ (1− ηR)(µn − µ)

)
ϕ.
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We first observe that for every x, y, z ∈ RN , if |x| ≥ 2 min(|y|, |z|) then

Iα(x− z) ≤ 3N−αIα(x− y).

Hence, for every y ∈ RN \BR,

|Iα ∗ (1− ηR)(µ− µn)(y)| ≤ 3N−α
ˆ
BR

∣∣Iα ∗ (1− ηR)|µ− µn|
∣∣.

Hence, by the Cauchy-Schwarz inequality, if suppϕ ⊂ BR/2,∣∣∣ˆ
RN

(
Iα/2 ∗ (µn − µ)

)
ϕ
∣∣∣ ≤ ∣∣∣ˆ

RN
ηR
(
Iα/2 ∗ ϕ

)
(µn − µ)

∣∣∣+ C

R
N
2

(ˆ
RN

∣∣(Iα/2 ∗ |µn − µ|∣∣2)) 1
2

ˆ
RN
|ϕ|.

The conclusion follows by letting R→∞, and then n→∞, since ηR
(
Iα/2 ∗ ϕ

)
∈ Cc(RN ). �

Proof of proposition 4.3. It is clear that (i) implies (ii). If (ii) holds, we observe that in view of
proposition 4.1,

(4.3) lim
n→∞

ˆ
RN

(Iα/2 ∗ |u|p)(Iα/2 ∗ |un − u|p) = 0.

Since u 6= 0, we conclude that Iα/2 ∗ |u|p is locally bounded from below, and |un − u|p converges to
0 in L1

loc(RN ).
If (iii) holds, then by the classical Brezis–Lieb property of proposition 4.4, the sequence (|un|p)n∈N

converges in L1
loc(RN ) to |u|p.

If (iv) holds then (v) follows from proposition 4.5.
Finally, assume that (v) holds. By the classical Brezis–Lieb property of proposition 4.4, the

sequence (|un|p − |un − u|p)n∈N converges weakly in the sense of measures to |u|p. Thus by
proposition 4.5 we conclude that the sequence (Iα/2 ∗ |un − u|p)n∈N converges weakly to 0 in
L2(RN ). This implies (4.3), and hence (i) follows by proposition 4.1. �

In view of proposition 4.3 it is natural to ask for examples where the convergence does not occur.
We shall rely on the next lemma, which states that there exists a set of positive Hα/2–capacity and
vanishing Lebesgue measure (see for example [3, theorem 5.3.2; 17, theorem IV.3; 45]). We give
here an explicit construction in order to give more insight on the failure of the Brezis–Lieb equality.

Lemma 4.6. Let N ∈ N, α ∈ (0, N) and p ≥ 1. There exists a sequence (fn)n∈N in C∞c (RN ) such
that:
(a) the set

⋃
n∈N supp fn is bounded,

(b) for every n ∈ N, fn ≥ 0,
(c) for every n ∈ N,

ˆ
RN

fn = 1,

(d) the sequence (fn)n∈N converges almost everywhere to 0 in RN ,
(e) the sequence (Iα/2 ∗ |fn|p)n∈N is bounded in L2(RN ).

In particular, if we take un = (up + fpn)
1
p for some given function u ∈ C∞c (RN ) \ {0}, it is clear

that the sequence (un)n∈N converges to u almost everywhere, that the sequence (Iα/2 ∗ |un|p) is
bounded in L2(RN ) but that (|un|p)n∈N does not converge to |u|p in the sense of measures.

Proof. Let Q = [−1, 1]n be the unit cube. We take f0 ∈ C∞c (Q) such that
´
Q
f0 = 1 and f0 ≥ 0.

Fix ρ > 1
2 , and we define inductively the function fn ∈ C∞c (Q) for every n ∈ N and x ∈ Q by

fn+1(x) = 1
(2ρ)N

∑
a∈{−1/2,1/2}N

fn

(x− a
ρ

)
.
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It is clear that fn ≥ 0 and that
´
Q
fn = 1. We compute

ˆ
RN
|Iα/2 ∗ fn+1|2 = ρN+α

∑
a∈{−1/2,1/2}N

b∈{−1/2,1/2}N

ˆ
Q

ˆ
Q

Iα(ρ(x− y) + a− b)fn(x)fn(y) dx dy

≤ 1
2NρN−α

ˆ
RN
|Iα/2 ∗ fn|2 + C

(1 + 2ρ)N−α .

Therefore,
ˆ
RN
|Iα/2 ∗ fn|2 ≤

1
(2NρN−α)n

ˆ
RN
|Iα/2 ∗ f0|2 +

1− 1
(2NρN−α)n

1− 1
2NρN−α

C

(1 + 2ρ)N−α .

In particular, if ρ > 2−N/(N−α) then the sequence has the announced properties. �

The reader will recognize that the sequence (fn)n∈N converges to a measure concentrated on a
generalized Cantor set of Hausdorff dimension N log 2/ log(1/ρ) > N − α. This is consistent with
the known relationship between Hausdorff measure and capacity. In particular, small values of α
require mildly concentrating sequences.

Remark 4.1. Note that construction in the last part of the proof of lemma 3.4 (case α > 2
and p > 2α

α−2 ) provides also an alternative proof of lemma 4.6. Indeed, the restriction α > 2
and p > 2α

α−2 in lemma 3.4 was necessary to control the gradient term, otherwise one could take
arbitrary p ≥ 1.

We now give some sufficient conditions for proposition 4.3 to apply.

Proposition 4.7 (Brezis–Lieb lemma with high local integrability). Let N ∈ N, α ∈ (0, N) and
p ≥ 1. Assume that (un)n∈N is a sequence of measurable functions from RN to R that converges
to u : RN → R almost everywhere. If the sequence (Iα/2 ∗ |un|p)n∈N is bounded in L2(RN ) and if
there exists q > p such that the sequence (un)n∈N is bounded in Lqloc(RN ), then (Iα/2 ∗ |un|p)n∈N
converges weakly to Iα/2 ∗ |u|p in L2(RN ) and

lim
n→∞

ˆ
RN

∣∣∣∣∣Iα/2 ∗ |un|p∣∣2 − ∣∣Iα/2 ∗ |un − u|p∣∣2∣∣∣ =
ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2.
The local boundedness assumption is satisfied in particular if the sequence (un)n∈N is bounded

in Lq(RN ). When q = 2Np
N+α , we recover a result of Moroz and Van Schaftingen [42] whereas when

p = 2 and q > 2 this is due to Bellazzini, Frank and Visciglia [7].

Proof of proposition 4.7. The almost everywhere convergence and boundedness in Lqloc(RN ) imply
that the sequence (|un|p)n∈N converges weakly in Lq/ploc (RN ) [12, proposition 4.7.12; 59, proposition
5.4.7]. �

Proposition 4.8 (Brezis–Lieb lemma in Coulomb–Sobolev spaces). Let N ∈ N, α ∈ (0, N) and
p ≥ 1 be such that

1
p
>

1
2 −

1
α
.

Assume that (un)n∈N is a sequence of measurable functions from RN to R that converges to
u : RN → R almost everywhere. If the sequence (Iα/2 ∗ |un|p)n∈N is bounded in L2(RN ) and if the
sequence (Dun)n∈N is bounded in L2(RN ), then

lim
n→∞

ˆ
RN

∣∣∣∣∣Iα/2 ∗ |un|p∣∣2 − ∣∣Iα/2 ∗ |un − u|p∣∣2∣∣∣ =
ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2.
Proof. We observe that by proposition 3.3, the sequence (un)n∈N is relatively compact in Lploc(RN ).
Then we apply proposition 4.3. �
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5. Groundstates of Schrödinger–Poisson–Slater equations

5.1. Existence of optimizers to multiplicative inequalities and proof of theorem 2. Let
N ∈ N, α ∈ (0, N), p ≥ 1 and q ≥ 1 be such that assumption (Q) holds. For each u ∈ Eα,p(RN )\{0},
we define the quotient

R(u) =

( ´
RN |Du|

2
) θ

2
(´

RN |Iα/2 ∗ |u|
p|2
) 1−θ

2p

( ´
RN |u|q

) 1
q

,

where the parameter θ is given by (1.6) of theorem 1. For a, b > 0, define

(5.1) S := inf
{
R(u) : u ∈ Eα,p(RN ) \ {0}

}
,

Sa := inf
{
R(u) : u ∈ Eα,p(RN ) \ {0},

ˆ
RN
|u|q = a

}
and

Sa,b := inf
{
R(u) : u ∈ Eα,p(RN ) \ {0},

ˆ
RN
|Du|2 = a,

ˆ
RN
|u|q = b

}
.

By using the scaling and homogeneity invariance of R we see that
S = Sa = Sa,b.

In fact, using the invariance, it is possible to minimize constraining either one or two of the three
integrals involved in the quotient R, without changing the value of the infimum.

The following lemma is in the spirit of a classical result of Lieb, see e.g. [32, p. 215]. Together
with proposition 2.5 it implies that, under a suitable condition, a given bounded sequence in
Eα,p(RN ) contains a subsequence which after translations has a nontrivial limit in L1

loc(RN ). In
view of proposition 2.10, when p > 1 this is equivalent for a bounded sequence in Eα,p(RN ) to
have a nonzero weak limit, up to translations and a subsequence. A similar statement was recently
established in the fractional case [7, Lemma 2.1]. We give a short self-contained proof, in the spirit
of the proofs of interpolation inequalities between Sobolev spaces and Morrey spaces given recently
in [57].

Lemma 5.1 (On vanishing bounded sequences). Let N ∈ N and (un)n∈N be a sequence in
W 1,1

loc (RN ). If

lim sup
n→∞

ˆ
RN
|∇un|2 <∞

and there exists R > 0 such that

lim
n→∞

sup
x∈RN

ˆ
BR(x)

|un| = 0,

then for every ε > 0,
lim
n→∞

LN ({x : |un(x)| > ε}) = 0.

Proof. We first observe that the assumption implies that for every R > 0,

lim
n→∞

sup
x∈RN

ˆ
BR(x)

|un| = 0.

Following the strategy of [57], we start from the Sobolev representation formula: for every n ∈ N
and almost every x ∈ RN , we have

u(x) = 1
ωNRN

ˆ
BR(x)

u+
ˆ
BR(x)

∇un(x) · SR(x− y) dy,

where ωN = πN/2/Γ(N2 + 1) is the volume of the N–dimensional unit ball and the Sobolev kernel
SR : BR(0)→ RN is defined by

SR(z) = −
( 1
|z|N

− 1
RN

) z

NωN
.
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For every ε > 0, we have

{x ∈ RN : un(x) ≥ ε} ⊆
{
x ∈ RN :

ˆ
BR(x)

|un| ≥
ωNR

Nε

2

}
∪
{
x ∈ RN :

∣∣SR ∗∇un∣∣(x) ≥ ε

2

}
∪E,

with LN (E) = 0.
We now observe that

LN
({
x ∈ RN : (SR ∗ ∇un)(x) ≥ ε

2
})
≤ 4
ε2

ˆ
RN
|SR ∗ ∇un|2 ≤

4
ε2

(ˆ
BR(0)

|SR|
)2 ˆ

RN
|∇un|2.

Since ˆ
BR(0)

|SR| = R
N

N + 1 ,

we conclude that

LN
(
{x ∈ RN : un(x) ≥ ε}

)
≤ LN

({
x ∈ RN :

ˆ
BR(x)

|un| ≥
ωNR

Nε

2

})
+
( 2NR

(N + 1)ε

)2 ˆ
RN
|∇un|2.

In order to obtain the conclusion, for every η > 0, we take R > 0 small enough so that for each
n ∈ N, ( 2NR

(N + 1)ε

)2 ˆ
RN
|∇un|2 ≤ η;

By the other assumption, when n ∈ N is large enough{
x ∈ RN :

ˆ
BR(x)

|un| ≥
ωNR

Nε

2

}
= ∅,

and the conclusion follows. �

An immediate consequence of the preceding lemma is the following

Lemma 5.2 (Nonzero weak limit after translations). Let N ∈ N, α ∈ (0, N) and p ≥ 1. Let
(un)n∈N be a sequence in Eα,p(RN ) such that ‖un‖Eα,p(RN ) < C and let ε, δ > 0 be such that for
all n ∈ N

(5.2) LN (x : |un(x)| > ε) > δ.

Then there exists a sequence (an)n∈N in RN such that vn := un(· + an) does not contain any
subsequence converging to zero in L1

loc(RN ).

Proof. By Lemma 5.1 R,C0 > 0 and a sequence (an)n∈N in RN exist such thatˆ
BR(0)

|vn| =
ˆ
BR(an)

|un| > C0 > 0,

where vn := un(·+ an). And this concludes the proof. �

Now we are in a position to prove theorem 2 of the Introduction. For convenience, we reproduce
here the statement.

Theorem 7 (Existence of optimizers). Let N ∈ N, α ∈ (0, N), p ≥ 1 and assumption (Q′) holds.
Then the best constant S in (5.1) is achieved.

Proof. Let (un)n∈N be a minimizing sequence for S such that ‖Dun‖L2 = 1 and ‖un‖Lq = 1.
Such a minimizing sequence is obviously bounded in Eα,p(RN ). By the so-called p, q, r theorem,
[26, Lemma 2.1 p. 258], using the assumption on q, and by theorem 1 it follows that (5.2) holds.
By lemma 5.2 and proposition 2.5, up to translations and a subsequence (un)n∈N converges in
L1
loc(RN ) and almost everywhere in RN to a nontrivial limit u.
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Passing if necessary to a subsequence, by proposition 2.4 and by proposition 4.1,

S = lim
n→∞

‖Dun‖θL2(RN )‖Iα/2 ∗ |un|
p‖

1−θ
p

L2(RN )

‖un‖Lq(RN )

≥ lim sup
n→∞

(‖Du‖2L2(RN ) + ‖D(un − u)‖2L2(RN ))
θ
2 (‖Iα/2 ∗ |u|p‖2L2(RN ) + ‖Iα/2 ∗ |un − u|p‖2L2(RN ))

1−θ
2p

‖un‖Lq(RN )
,

where

θ =
1
q −

1
2p
(
1 + α

N

)
1
2 −

1
N −

1
2p
(
1 + α

N

) .
By the discrete Hölder inequality, this implies that

S ≥ lim sup
n→∞

(
‖Du‖

2θp
θp+(1−θ)
L2(RN ) ‖Iα/2 ∗ |u|

p‖
2(1−θ)
θp+(1−θ)
L2(RN ) + ‖D(un − u)‖

2θp
θp+(1−θ)
L2(RN ) ‖Iα/2 ∗ |u− un|

p‖
2(1−θ)
θp+(1−θ)
L2(RN )

) θ
2 + 1−θ

2p

‖un‖Lq(RN )
.

By definition of S and by the classical Brezis–Lieb lemma this implies that

S ≥ lim sup
n→∞

S

(
‖u‖

2p
θp+(1−θ)
Lq(RN ) + ‖un − u‖

2p
θp+(1−θ)
Lq(RN )

) θ
2 + (1−θ)

2p(
‖u‖q

Lq(RN ) + ‖un − u‖qLq(RN )
) 1
q

.

Since by our assumption,
1
q
<
θ

2 + 1− θ
2p ,

it follows by strict concavity and since ‖u‖Eα,p(RN ) 6= 0, that

lim
n→∞

‖u− un‖Lq(RN ) = 0,

passing if necessary to a subsequence. In view of the Fatou property (proposition 2.4) this implies
that

S = lim
n→∞

‖Dun‖θL2(RN )‖Iα/2 ∗ |un|
p‖

1−θ
p

L2(RN )

‖un‖Lq(RN )
≥
‖Du‖θL2(RN )‖Iα/2 ∗ |u|

p‖
1−θ
p

L2(RN )

‖u‖Lq(RN )
,

which is enough to prove the claim. �

We emphasise that assumptions of theorem 7 include p = 1, although in this case there is no
obvious Euler–Lagrange equation which could be associated to R. If p > 1 then the Euler–Lagrange
equation of the quantity logR(u) for u ∈ Eα,p(RN ) \ {0} has the form

(5.3) A(−∆)u+B(Iα ∗ |u|p)|u|p−2u = C|u|q−2u in RN ,

where

A = θ

‖Du‖2
L2(RN )

, B = 1− θ
‖Iα/2 ∗ |w|p‖2L2(RN )

, C = 1
‖u‖q

Lq(RN )
.

In particular, minimizers for S constructed in theorem 7 are weak solutions of (5.3) and, after a
rescaling, of equation (SPS). Note also that if u is a minimizer for S then |u| is also a minimizer
and hence we can assume that u is nonnegative.

In the next section, we are going to consider an equivalent to (5.1) additive minimization problem
for the functional which has a meaning of the physical energy which is naturally associated to
(SPS).
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5.2. Additive minimization problem. For u ∈ Eα,p(RN ), set

(5.4) E∗(u) = 1
2

ˆ
RN
|Du|2 + 1

2p

ˆ
RN
|Iα/2 ∗ |u|p|2,

and for c > 0 define a minimization problem

(5.5) Mc = inf
u∈Ac

E∗(u)

where
Ac =

{
u ∈ Eα,p(RN ) :

ˆ
RN
|u|q = c

}
.

Up to a rescaling, for p > 1 this problem shares with (5.1) the same Euler-Lagrange equation.
In fact, one can show that minimization problems (5.1) and (5.5) are equivalent. Indeed, given
u ∈ Ac, consider a rescaling uλ(x) = λ−N/qu(x/λ) ∈ Ac. Minimizing E∗(uλ) with respect to λ > 0,
after a direct computation we find that

min
λ>0
E∗(uλ) = C∗

(
R(u)

)2σ
,

where
σ = (N + α)− p(N − 2)

(α+ 2)− 2N
q (p− 1)

and

C∗ =
((1− θ

pθ

)σθ
+
(1− θ

pθ

)−σ 1−θ
p

)( 1
2θ(2p)

1−θ
p

)σ
,

with θ as in (1.8). We conclude that the best constant S in the multiplicative minimization problem
(5.1) is achieved if and only if Mc is achieved in the additive minimization problem (5.5). Moreover,

(5.6) Mc = C∗
(
c

1
q S
)2σ = c

2σ
q M1.

In particular, Theorem 7 implies the existence of a minimizer for (5.5). Nevertheless, below we
sketch an independent proof, which uses the same tools as the proof of Theorem 7 but provides an
additional information about the properties of the minimizing sequences.

Theorem 8. Let N ∈ N, α ∈ (0, N), p ≥ 1 and assumption (Q′) holds. Then all the minimising
sequences for Mc in (5.5) are relatively compact in Eα,p(RN ) modulo translations. In particular,
the best constant Mc is achieved.

Proof. Let (un)n∈N be a minimizing sequence for M1. By p, q, r theorem [26, Lemma 2.1 p. 258],
using the assumption on q and by Theorem 1 it follows that (5.2) holds. By using Lemma 5.2 and
Proposition 2.5, up to translations and a subsequence we can assume that (un)n∈N converges in
L1
loc(RN ) and almost everywhere in RN to a nontrivial limit u.
Now, up to subsequence, there holds

lim
n→∞

‖u− un‖Lq(RN ) = 0,

and in particular ‖u‖Lq(RN ) = 1.
In fact, passing if necessary to a subsequence, by Proposition 2.4, by Proposition 4.1 and by

(5.6) we obtain

M1 = lim
n→∞

(1
2‖Dun‖

2
L2(RN ) + 1

2p‖Iα/2 ∗ |un|
p‖2L2(RN )

)
≥ lim sup

n→∞

(1
2‖Du‖

2
L2(RN ) + 1

2‖D(un − u)‖2L2(RN )

+ 1
2p‖Iα/2 ∗ |u|

p‖2L2(RN ) + 1
2p‖Iα/2 ∗ |un − u|

p‖2L2(RN )

)
≥M1 lim sup

n→∞

(
‖u‖2σLq(RN ) + ‖u− un‖2σLq(RN )

)
.



SCHRÖDINGER–POISSON–SLATER EQUATIONS AT THE CRITICAL FREQUENCY 31

In view of the assumption (Q′), we have 2σ/q ∈ (0, 1). The strong convergence in Lq(RN ) follows
by strict concavity, as ‖u‖Lq(RN ) 6= 0.

As a consequence M1 is achieved, since by Proposition 2.4 (Fatou’s property) we have

M1 ≥
1
2‖Du‖

2
L2(RN ) + 1

2p‖Iα/2 ∗ |u|
p‖2L2(RN ).

Notice that the convergence is in Eα,p(RN ) in view of Proposition 4.1 and Proposition 2.4. �

Remark 5.1. By interpreting (|un|q)n∈N as a sequence of probability measures, in the language
of the concentration-compactness principle of P.L. Lions [34], Lemma 5.2 rules out the vanishing
case, and (5.6) yields the strict subadditive inequality

Mc1+c2 < Mc1 +Mc2 , c1, c2 > 0,

which rules out the dichotomy case.

5.3. Existence of groundstates and proof of theorem 3. We now formulate our main result on
the existence of groundstates solutions of equation (SPS), namely theorem 3 from the introduction,
which we recall here for reader’s convenience:

Theorem 3. Let N ∈ N, α ∈ (0, N), p > 1 and assumption (Q′) holds. Then there exists a
nontrivial nonnegative groundstate solution u ∈ Eα,p(RN ) ∩ C2(RN ) to equation (SPS) and
u ∈ C∞(RN \ u−1(0)). In addition, if p ≥ 2 then u(x) > 0.

Proof. Let w ∈ Eα,p(RN ) be a minimiser for M1 in (5.5). Since |w| ∈ Eα,p(RN ) is also a minimiser
forM1, we can assume that w is nonnegative. Since p > 1, the energy E is of class C1(Eα,p(RN );R)
and the Euler-Lagrange equation for w can be written in the form

−∆w + (Iα ∗ |w|p)|w|p−2w = µ|w|q−2w in RN ,

with a Lagrange multiplier µ > 0.
Writing w(x) = γu(δx), for arbitrary γ, δ > 0, it follows that u is a solution of

(5.7) −∆u+ γ2p−2δ−α−2(Iα ∗ |u|p)|u|p−2u = µγq−2δ−2|u|q−2u in RN .

Since q 6= 2 2p+α
2+α we can define γ, δ > 0 such that

γ2p−2δ−α−2 = 1 and µγq−2δ−2 = 1.

It follows that u is a nonnegative solution to the equation (SPS).
Regularity and positivity properties of the ground states of (SPS) will follow from the results

in the remaining part of this section. �

Remark 5.2. The above simple scaling argument shows that the condition q 6= 2 2p+α
2+α is necessary

and sufficient to get rid of any arising multipliers for this class of Euler-Lagrange equations.

5.4. Regularity and positivity of weak solutions. We first establish regularity of weak solu-
tions of (SPS).

Proposition 5.3 (Local regularity). Let N ∈ N, α ∈ (0, N), p > 1 and assumption (Q′) holds. If
u ∈ Eα,p(RN ) is a weak solution of the equation

(5.8) −∆u+
(
Iα ∗ |u|p

)
|u|p−2u = |u|q−2u in RN ,

where µ > 0, then the following holds:
• u ∈ Lr(RN ) for every r ∈ [1,∞) such that

1
r
≤ max

{1
2 −

1
N
,

2 + α

2(2p+ α)

}
,

• u ∈ Ck,γloc (RN ) for every k ∈ N and γ ∈ (0, 1) such that k + γ ≤ min{p̃, q̃}+ 1, where for
s ∈ R we denote s̃ =∞ if s is an even integer and s̃ = s otherwise,

• u ∈ C∞(RN \ u−1(0)).
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Proof of proposition 5.3. The essential new step in the proof is the following claim which improves
regularity using the Coulomb–Sobolev embedding.

Claim 1. Let r ≥ q and u ∈ Lr(RN ). If s ∈ [1,∞) is such that either r − q ≤ 2
2+α

(
(N − 2)p −

(N + α)
)
and

N − 2
N(2 + r − q) ≥

1
s
≥ α+ 2

2(α+ 2p) + (α+ 2)(r − q)
or r − q ≥ 2

2+α
(
(N − 2)p− (N + α)

)
and

(N − 2)+

N(2 + r − q) ≤
1
s
≤ α+ 2

2(α+ 2p) + (α+ 2)(r − q) ,

then u ∈ Ls(RN ).

In particular, if N ≥ 3 then u ∈ L
N(2+r−q)
N−2 (RN ) ∩ L2 2p+α

2+α +r−q(RN ).

Proof of the claim. Given m > 0, we define the truncated solution um ∈ Eα,p(RN ) for each x ∈ RN
by

um(x) =


−m if u(x) < −m,
u(x) if −m ≤ u(x) ≤ m,
m if u(x) > m.

Given β > 1/2, we test the equation against the function |um|2β−2um and we getˆ
RN
|u|q−2u|um|2β−2um =

ˆ
RN
∇u · ∇(|um|2β−2um) + (Iα ∗ |u|p)|u|p−2u|um|2β−2um.

Since umu ≤ u2, we first haveˆ
RN
|u|q−2u|um|2β−2um ≤

ˆ
RN
|u|q+2β−2.

Since ∇um = ∇u on supp(∇um), we also haveˆ
RN
∇u · ∇(|um|2β−2um) = 2β − 1

β2

ˆ
RN
|∇|um|β |2.

Finally we have, by the Cauchy–Schwarz inequalityˆ
RN

(Iα ∗ |u|p)|u|p−2u|um|2β−2um ≥
ˆ
RN

(Iα ∗ |um|p)|um|p+2β−2

≥
ˆ
RN

(Iα ∗ |um|p+β−1)|um|p+β−1.

In summary, we have the estimate
2β − 1
β2

ˆ
RN
|∇|um|β |2 +

ˆ
RN

(Iα ∗ (|um|β)1+ p−1
β )(|um|β)1+ p−1

β ≤
ˆ
RN
|u|q+2β−2.

We now take β = 1 + r−q
2 . Then

1 + p− 1
β

= 2p+ r − q
2 + r − q

and hence |um|β ∈ Eα,
2p+r−q
2+r−q (RN ). By the Coulomb–Sobolev embedding (theorem 1), the integral

(5.9)
ˆ
RN
|um|s

is bounded uniformly with respect to m > 0. We conclude by Lebesgue’s monotone convergence
theorem that u ∈ Ls(RN ). �

Claim 2. u ∈ Lr(RN ) for every r ∈ [1,∞) such that
1
r
≤ max

{1
2 −

1
N
,

2 + α

2(2p+ α)

}
.
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Proof of the claim. This follows by the Coulomb–Sobolev embeddinq (theorem 1) and by iterating
claim 1.

Indeed, for p > N+α
N−2 we can set

r0 := 2α+ 2p
α+ 2 .

Then by claim 1, u ∈ Lrk(RN ) for all k ∈ N ∪ {0}, where

rk+1 := max
{

N

N − 2
(
rk − q

)
+ 2N
N − 2 , rk +

(
2α+ 2p
α+ 2 − q

)}
.

Since 2N
N−2 < q < 2α+2p

α+2 , it is clear that rk →∞ as k →∞.

On the other hand, for N ≥ 3, 1 < p < N+α
N−2 and 2α+2p

α+2 < q < 2N
N−2 , we can choose

r0 := 2N
N − 2 .

Then by claim 1, u ∈ Lrk(RN ) for all k ∈ N ∪ {0}, where

rk+1 := max
{

N

N − 2
(
rk − q

)
+ 2N
N − 2 , rk −

(
q − 2α+ 2p

α+ 2

)}
= N

N − 2
(
rk − q

)
+ 2N
N − 2 ,

since q < 2N
N−2 . Clearly rk →∞ as k →∞. �

Claim 3. u ∈W 2,r
loc (RN ) for every r ∈ [1,∞).

Proof of the claim. By claim 2 and the Hölder inequality, one has for every r ∈ [1,∞), u ∈ Lrloc(RN ).
It follows that Iα ∗|u|p ∈ L∞(RN ), and therefore for every r ∈ [1,∞), (Iα ∗|u|p)|u|p−2u ∈ Lrloc(RN ).
Since we also have for every r ∈ [1,∞), |u|q−2u ∈ Lrloc(RN ), we conclude by the classical Calderón–
Zygmund regularity estimates that for every r ∈ (1,∞), u ∈W 2,r

loc (RN )[25, chapter 9]. �

The additional Hölder and C∞–regularity follows from the classical Schauder estimates. �

Remark 5.3. If p(N − 2) < N +α then regularity of weak solutions can be obtained by a classical
bootstrap argument. Indeed, by the Kato inequality, every weak solution u ∈ Eα,p(RN ) of (5.8)
satisfies

−∆|u| ≤ −∆|u|+ V (Iα ∗ |u|p)|u|p−1 ≤ |u|q−1 in RN .

By the Coulomb–Sobolev embedding we have u ∈ Lr(RN ) for 1
q ≤

1
r ≤

1
2 −

1
N . Then regularity of

u follows by iterating standard linear regularity estimates (see [25, proof of theorem 8.16; 56] and
also [22]).

One of the important consequences of proposition 5.3 is positivity of nontrivial nonnegative
solutions of (5.8) in the case p ≥ 2.

Proposition 5.4 (Positivity). Let N ∈ N, α ∈ (0, N), p ≥ 2 and assumption (Q′) holds. If
u ∈ Eα,p(RN ) \ {0} is a nonnegative weak solution of the equation (5.8) then u(x) > 0 for all
x ∈ RN .

Proof. Under the assumptions, u satisfies the equation

−∆u+ V u = 0 in RN ,

where V = (Iα ∗ up)up−2 − uq−2. By proposition 5.3 and since p ≥ 2, V ∈ Lr(RN ) for all r > N
2 .

Then u(x) > 0 for all x ∈ RN by the strong maximum principle (see [25, theorem 8.19]). �

It is an interesting open question whether equation (5.8) with p < 2 admits nontrivial nonnegative
solutions which vanish on subsets of RN .
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5.5. Pohožaev identity. An important feature of equations of type (SPS) is that under mild
regularity assumptions its finite energy solutions satisfy a Pohožaev type integral identity.

Proposition 5.5 (Pohožaev identity). Let N ∈ N, α ∈ (0, N), p > 1, q > 1 and µ > 0. Assume
that u ∈ Eα,p(RN ) ∩ Lq(RN ) is a weak solution of the equation

(5.10) −∆u+
(
Iα ∗ |u|p

)
|u|p−2u = µ|u|q−2u in RN .

If ∇u ∈ Eα,ploc (RN ) ∩ Lqloc(RN ) then

(5.11) N − 2
2

ˆ
RN
|∇u|2 + N + α

2p

ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2 = Nµ

q

ˆ
RN
|u|q.

By ∇u ∈ Eα,ploc (RN )∩Lqloc(RN ) we mean that for every ψ ∈ C∞c (RN ;RN ), ψ · ∇u ∈ Eα,p(RN )∩
Lq(RN ).

In particular, if assumption (Q′) holds then u ∈ C2(RN ) by proposition 5.3, and therefore (5.11)
is valid.

For N = 3, α = 2, p = 2 a Pohožaev type identity for Schrödinger–Poisson–Slater type equations
is well known [19, 48]. The proof of proposition 5.5 for the general case is an adaptation of the
argument in [42, Proposition 3.1]. The strategy is classical and consists in testing the equation
against a suitable cut-off of x · ∇u(x) and integrating by parts, cf. [58, appendix B]. We omit the
details.

A direct consequence of Pohožaev identity (5.11) is the following nonexistence result for (SPS).

Proposition 5.6 (Nonexistence of solutions). Let N ∈ N, α ∈ (0, N) and p > 1. Assume that

either 1
p
>

(N − 2)+

N + α
and 1

q
6∈
(

1
2 −

1
N
,

1
2p + α

2Np

)
,

or 1
p
<

(N − 2)+

N + α
and 1

q
6∈
(

1
2p + α

2Np,
1
2 −

1
N

)
.

(P)

Then equation (SPS) has no nontrivial weak solutions u ∈ Eα,p(RN ) ∩ Lq(RN ) such that Du ∈
Eα,ploc (RN ) ∩ Lqloc(RN ).

Proof. Testing (SPS) against the solution u we obtain a Nehari type identity
ˆ
RN
|∇u|2 +

ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2 =
ˆ
RN
|u|q.

Combining this with the Pohožaev identity (5.11) we conclude that the solution u must satisfy the
relation

(5.12)
ˆ
RN
|∇u|2 =

2N
q −

N+α
p

N − 2− N+α
p

ˆ
RN
|u|q,

ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2 =
(

1−
2N
q −

N+α
p

N − 2− N+α
p

)ˆ
RN
|u|q.

The conclusion follows. �

Comparing nonexistence assumption (P) with the existence range (Q′) we observe that there is
a gap between the two assumptions. We are going to show that the existence range (Q′) indeed
could be extended.

6. Estimates for radial functions and radial Coulomb–Sobolev embeddings

In this section we study embedding properties of the subspace of radial functions Eα,prad (RN ) into
Lebesgue spaces Lq(RN ) and prove theorem 4.
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6.1. Necessary conditions for the radial Coulomb–Sobolev embeddings. We begin by
justifying the necessity of the embedding assumptions (Q) and (Qrad) of theorem 4.

Lemma 6.1 (Criticality of the classical Sobolev exponent). Let N ≥ 1, α ∈ (0, N) and p ≥ 1.
Then there exists a family of radial functions uR ∈ C1

c (RN ) such that if 1
p ≥

N−2
N+α , then

lim sup
R→0

ˆ
RN
|DuR|2 +

∣∣Iα/2 ∗ |uR|p∣∣2 <∞
and for every q ∈ [1,∞],

lim inf
R→0

‖uR‖Lq(RN )R
N−2

2 −
N
q > 0;

and if p ≥ N+α
N−2 , then

lim sup
R→∞

ˆ
RN
|DuR|2 + |Iα/2 ∗ |uR|p|2 <∞

and for every q ∈ [1,∞],
lim inf
R→∞

‖uR‖Lq(RN )R
N−2

2 −
N
q > 0.

In particular, the classical Sobolev exponent q = 2N
N−2 is always an extremal exponent for the

radial Coulomb–Sobolev embeddings.

Proof of lemma 6.1. Choose a radial function u ∈ C1
c (RN ) \ {0}. For R > 0 and x ∈ RN , set

uR(x) = R−
N−2

2 u
(
x
R

)
. Then we computeˆ

RN
|DuR|2 + |Iα/2 ∗ |uR|p|2 =

ˆ
RN
|Du|2 +RN+α−p(N−2)

ˆ
RN
|Iα/2 ∗ |u|p|2

and
‖uR‖Lq(RN ) = R

N
q −

N−2
2 ‖u‖Lq(RN ).

The conclusion follows. �

Lemma 6.2 (Criticality of the Coulomb–Sobolev exponents). Let N ≥ 2, α ∈ (0, N) and p ≥ 1.
Then there exists a family of radial functions uR ∈ C1

c (B2R \BR) such that if p(N − 2) < N + α,

lim sup
R→∞

ˆ
RN
|DuR|2 + |Iα/2 ∗ |uR|p|2 <∞

and, for every q ∈ [1,∞],

lim inf
R→∞

‖uR‖Lq(B2R\BR)R
3N+α−4
2(p+2) −

2p(N−1)+N−α
q(p+2) > 0 if α > 1,

lim inf
R→∞

‖uR‖Lq(B2R\BR)R
N−1
p+2 ( 3

2−
2p+1
q )|logR|

1
2p > 0 if α = 1,

lim inf
R→∞

‖uR‖Lq(B2R\BR)R
N−1
p+α+1 (α+2

2 −
2p+α
q ) > 0 if α < 1,

and if p(N − 2) > N + α, then

lim sup
R→0

ˆ
RN
|DuR|2 + |Iα/2 ∗ |uR|p|2 <∞

and, for every q ∈ [1,∞],

lim inf
R→0

‖uR‖Lq(B2R\BR)R
3N+α−4
2(p+2) −

2p(N−1)+N−α
q(p+2) > 0 if α > 1,

lim inf
R→0

‖uR‖Lq(B2R\BR)R
N−1
p+2 ( 3

2−
2p+1
q )|logR|

1
2p > 0 if α = 1,

lim inf
R→0

‖uR‖Lq(B2R\BR)R
N−1
p+α+1 (α+2

2 −
2p+α
q ) > 0 if α < 1.

In particular, when α < 1 the embedding of Eα,prad (RN ) into Lq(RN ) is noncompact for q = 2 2p+α
2+α .
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We point out that when α > 1 and p(N − 2) < N + α there is no embedding of Eα,prad (RN ) into
Lq(RN ) if

q < 22p(N − 1) +N − α
3N + α− 4 ,

from which we recover in the case where N = 3, α = 2 and p = 2, the condition q < 18
7 of Ruiz

[49, theorem 1.2]. When α ≤ 1 there is no embedding of Eα,prad (RN ) into Lq(RN ) if

q < 22p+ α

α+ 2 ,

which coincides with the necessary condition for the embedding of Eα,p(RN ) into Lq(RN ) (Theo-
rem 1). The case p(N − 2) = N + α is covered by lemma 6.1.

In order to prove lemma 6.2, we study the form of the Riesz integral kernel on radial functions,
where it reduces to less singular kernel.

Lemma 6.3. If N ≥ 2 and α ∈ (0, N), then for every measurable function f : [0,∞)→ [0,∞),
¨

RN

f(|x|)f(|y|)
|x− y|N−α

dx dy =
ˆ ∞

0

ˆ ∞
0

f(r)KR
α,N (r, s)f(s)rN−1sN−1 dr ds,

where the kernel KR
α,N : [0,∞)× [0,∞)→ [0,∞) is defined for r, s ∈ [0,∞)× [0,∞) by

KR
α,N (r, s) = CN

ˆ 1

0

z
N−3

2 (1− z)N−3
2

((s+ r)2 − 4rsz)N−α
2

dz = C ′N
F (N−α2 , N−1

2 , N − 1, 4rs
(s+r)2 )

(s+ r)N−α .

Moreover there exists M > 0 such that

KR
α,N (r, s) ≤MHα(r, s).

where

Hα(r, s) =



1
(rs)N−1

2

1
|r − s|1−α

if α < 1,

1
(rs)N−1

2
ln 2|r + s|
|r − s|

if α = 1,

1
(rs)N−α

2
if α > 1.

In this statement, F denotes the classical hypergeometric function (see for example [29, chapter
9]). Similar estimates were previously obtained in [23,47,55].

When N = 3, the kernel KR
α,N (r, s) is particularly easy to compute:

KR
α,3(r, s) = C3

2rs



1
1− α

( 1
|r − s|1−α

− 1
|r + s|1−α

)
if α < 1,

ln |r + s|
|r − s|

if α = 1,
1

α− 1
(
|r + s|α−1 − |r − s|α−1) if α > 1.

In particular, when N = 3 and α = 2, we recover [32, proof of theorem 9.7; 49, p. 359]

KR
2,3(r, s) = C3

2rs
(
|r + s| − |r − s|

)
= C3 min(r, s)

rs
.

Proof of lemma 6.3. By writing the integral in spherical coordinates, we have
ˆ
RN

ˆ
RN

f(|x|)f(|y|)
|x− y|N−α

dxdy =
ˆ ∞

0

ˆ ∞
0

f(r)
(ˆ

SN−1

ˆ
SN−1

1
|ru− rv|N−α

dudv
)
f(s)rN−1sN−1 dr ds.
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By writing the spherical integral in azimuthal coordinates and by using the trigonometric identities
sin θ = 2 sin θ

2 cos θ2 and cos θ = 2 cos2 θ
2 − 1, we obtainˆ

SN−1

ˆ
SN−1

1
|ru− rv|N−α

= C

ˆ π

0

(sin θ)N−2

(s2 + r2 − 2rs cos θ)N−α
2

dθ

= C

ˆ π

0

2N−2(sin θ
2 )N−2(cos θ2 )N−2

((s+ r)2 − 4rs(cos θ2 )2)N−α
2

dθ.

By a change of variables z = (cos θ2 )2, this gives
ˆ
SN−1

ˆ
SN−1

1
|ru− rv|N−α

= C

ˆ 1

0

2N−2z
N−3

2 (1− z)N−3
2

((s+ r)2 − 4rsz)N−α
2

dz.

In order to prove the bounds, we rewrite the kernel KR
α,N for every r, s ∈ (0,∞) as

KR
α,N (r, s) = C

ˆ π

0

2N−2(sin θ
2 )N−2(cos θ2 )N−2

((r − s)2 + 4rs(sin θ
2 )2)N−α

2
dθ.

If α ≥ 2, we haveˆ π

0

2N−2(sin θ
2 )N−2(cos θ2 )N−2

((r − s)2 + 4rs(sin θ
2 )2)N−α

2
dθ ≤

ˆ π

0

2α−2(sin θ
2 )α−2

(rs)N−α
2

dθ ≤ 2α−2π

(rs)N−α
2
.

If α < 2, we boundˆ π

0

2N−2(sin θ
2 )N−2(cos θ2 )N−2

((r − s)2 + 4rs(sin θ
2 )2)N−α

2
dθ ≤ 1

(rs)N−2
2

ˆ π

0

1
((r − s)2 + 4rs(sin θ

2 )2) 2−α
2

dθ.

Since for every θ ∈ [0, π] we have sin θ
2 ≥

θ
π and for every a, b ∈ R we have a2 + b2 ≥ (|a|+ |b|)2/2,

we deduce thatˆ π

0

1
((r − s)2 + 4rs(sin θ

2 )2) 2−α
2

dθ ≤
ˆ π

0

21−α2

(|r − s|+ 2
√
rsθ/π)2−α dθ.

and the conclusion follows. �

Proof of lemma 6.2. Observe that if we choose a radial function u ∈ C1
c (B1 \ {0}) \ {0} and define

vR ∈ C1
c (RN ) for x ∈ RN , R > 0 and γ ∈ R by

vR(|x|) = u
( |x| −R

Rγ

)
,

then, taking into account lemma 6.3, as Rγ−1 → 0 we haveˆ
RN
|vR|q = O

(
RN−1+γ),

ˆ
RN
|DvR|2 = O

(
RN−1−γ),

ˆ
RN

(
Iα/2 ∗ |vR|p

)2 ≤

O
(
RN−2+α+2γ), if α > 1,

O
(
RN−1+2γ) ln(R1−γ), if α = 1,

O
(
RN−1+γ(1+α)), if α < 1.

To construct the required family of functions, when α > 1 choose a radial function u ∈
C1
c (B1 \ {0}) \ {0} and we define uR ∈ C1

c (RN ) for x ∈ RN by

(6.1) uR(|x|) = 1
R

3N+α−4
2(p+2)

u
( |x| −R

R
p(N−1)−(N+α)+2

2+p

)
.

When α = 1, we take similarly

uR(|x|) = 1

R
3(N−1)
2(p+2) |logR|

1
2p

u
( |x| −R

R
(N−1)(p−1)

p+2

)
,
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whereas when α < 1, we set

uR(|x|) = 1

R
(N−1)(α+2)
2(p+1+α)

u
( |x| −R

R
(N−1)(p−1)
p+1+α

)
.

The choice of γ in all the above cases ensures that Rγ−1 → 0, and the support of uR is contained
in the annulus with radii R,R+Rγ which is contained in B2R \BR, as Rγ−1 is small enough. In
particular, since γ < 1 (resp.γ > 1) as p(N − 2) < N + α (resp. as p(N − 2) > N + α), we take
R→∞ (resp. R→ 0). The required conclusion now follows by direct computation. �

Finally, we are going to show optimality of the assumption (Qrad) for the continuous embedding
Eα,prad (RN ) into Lq(RN ).
Lemma 6.4 (No limiting radial estimate). Let N ≥ 2, α > 1 and p ≥ 1. If p(N − 2) 6= N + α
then there exists a sequence of radial functions (un)n∈N in C1

c (RN ) such that

sup
n→∞

ˆ
RN
|Dun|2 + |Iα/2 ∗ |un|p|2 <∞

and
lim
n→∞

ˆ
RN
|un|2

2p(N−1)+N−α
3N+α−4 =∞.

When N = 3, α = 2 and p = 2, lemma 6.4 was conjectured by D. Ruiz [49, remark 4.1].

Proof of lemma 6.4. Let q = 2 2p(N−1)+N−α
3N+α−4 and p(N − 2) < N + α. Define for R > 1,

uR,k =
k∑
i=1

uRi ,

where uR is the family of functions constructed in (6.1) in the proof of lemma 6.2. Since p(N −2) <
N + α, we have

lim
R→∞

ˆ
RN
|Iα/2 ∗ |uR,k|p|2 ≤ ck lim

R→∞

ˆ
RN
|Iα/2 ∗ |uR|p|2,(6.2)

lim
R→∞

ˆ
RN
|DuR,k|2 = k lim

R→∞

ˆ
RN
|DuR|2,

lim
R→∞

ˆ
RN
|uR,k|q = k lim

R→∞

ˆ
RN
|uR|q.

To deduce (6.2), we observe that for α > 1 by lemma 6.2,ˆ
RN
|Iα/2 ∗ |uR|p|2 = O(1),

ˆ
RN
|uR|p = O(R

N−α
2 ).

Then for a fixed k ∈ N and for sufficiently large R > 1 we have
ˆ
RN
|Iα/2 ∗ |uR,k|p|2 ≤ ck

ˆ
RN
|Iα/2 ∗ |uR|p|2 + 2

k∑
i,j=1
i>j

¨
RN

Iα(x− y)|uRi(x)|p|uRj (y)|p dxdy

≤ ck
ˆ
RN
|Iα/2 ∗ |uR|p|2 + c1

k∑
i,j=1
i>j

(
1

(Ri −Rj)N−α

ˆ
RN
|uRi |p

ˆ
RN
|uRj |p

)

≤ ck
ˆ
RN
|Iα/2 ∗ |uR|p|2 + c2

k∑
i,j=1
i>j

(RiRj)N−α
2

(Ri −Rj)N−α ,

and limR→∞
∑k
i,j=1, i>j

(Ri+j)
N−α

2

(Ri−Rj)N−α = limR→∞
∑k
i,j=1, i>j

(
R− i−j

2
1−R−(i−j)

)N−α
= 0.

If we define
vR,k(x) = 1

k
α+2

2(N+α−p(N−2))
uR,k

( x

k
p−1

N+α−p(N−2)

)
,
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we have

lim
R→∞

ˆ
RN
|Iα/2 ∗ |vR,k|p|2 ≤ c lim

R→∞

ˆ
RN
|Iα/2 ∗ |uR|p|2,

lim
R→∞

ˆ
RN
|DvR,k|2 = lim

R→∞

ˆ
RN
|DuR|2,

lim
R→∞

ˆ
RN
|vR,k|q = k

2(α−1)
3N+α−4 lim

R→∞

ˆ
RN
|uR|q.(6.3)

Since α > 1, the conclusion follows from (6.3) by a diagonal argument. The case p(N − 2) > N +α
is similar, by letting R→ 0. �

6.2. Radial estimates and proof of theorem 4. We establish additional estimates for radial
functions.

Theorem 9 (Uniform decay estimates for radial functions). Let N ≥ 2, α ∈ (0, N) and p ≥ 1.
The estimate

(6.4) |u(x)| ≤ C

|x|β
(ˆ

RN
|Du|2

) θ
2
(ˆ

RN
|Iα/2 ∗ |u|p|2

) 1−θ
2p

is satisfied for every function u ∈ Eα,prad (RN ) for almost every x ∈ RN if and only if
1

1 + p
1+min(1,α)

≤ θ ≤ 1

and
β = θ

N − 2
2 + (1− θ)N + α

2p > 0.

The assumption 1
1+ p

1+min(1,α)
≤ θ ≤ 1 implies immediately that β > 0, unless θ = 1 and N = 2.

When θ = 1 and N > 2, we recover the classical estimate of Ni [43]

(6.5) |u(x)| ≤ C

|x|N−2
2

(ˆ
RN
|Du|2

) 1
2

(see also [52, radial lemma 1; 54, lemma 1]). The other cases are new. In particular, when θ = 1
1+ p

2
,

we have the estimate

(6.6) |u(x)| ≤ C

|x|
3N+α−4
2(p+2)

(ˆ
RN
|Du|2

) 1
p+2
(ˆ

RN
|Iα/2 ∗ |u|p|2

) 1
2(p+2)

,

whereas when θ = 1
1+ p

1+α
, we have

(6.7) |u(x)| ≤ C

|x|
(N−1)(α+2)
2(p+1+α)

(ˆ
RN
|Du|2

) 1+α
2(p+1+α)

(ˆ
RN
|Iα/2 ∗ |u|p|2

) 1
2(p+1+α)

.

When N ≥ 3 it is possible to deduce the estimates of theorem 9 from the endpoint estimates (6.5),
(6.6) and (6.7), in order to cover the case N = 2 we prove directly the whole scale of estimates.

When N ≥ 3, the range of admissible decay rates β can de rewritten explicitly as follows:
• either α ≥ 1, 1

p ≥
N−2
N+α and 3N+α−4

2(p+2) ≥ β ≥
N−2

2 ,

• or α ≥ 1, 1
p ≤

N−2
N+α and 3N+α−4

2(p+2) ≤ β ≤
N−2

2 ,

• or α ≤ 1, 1
p ≥

N−2
N+α and (N−1)(α+2)

2(p+1+α) ≥ β ≥
N−2

2 ,

• or α ≤ 1, 1
p ≤

N−2
N+α and (N−1)(α+2)

2(p+1+α) ≤ β ≤
N−2

2 ;

whereas when N = 2, we have:
• either α ≥ 1 and 2+α

2(p+2) ≥ β > 0,
• or α ≤ 1 and 2+α

2(p+1+α) ≥ β > 0.
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Proof of theorem 9. We split the proof into three separate claims.

Claim 1. Estimate (6.4) holds if β = θN−2
2 + (1− θ)N+α

p > 0 and θ ≥ 1
1+ p

2
.

Proof of the claim. Let γ > 0. For almost every r > 0, we have

(6.8) |u(r)|γ ≤ 1
γ

ˆ ∞
r

|u′(s)||u(s)|γ−1 ds.

If γ ≤ 1 + p
2 , then by the generalized Hölder inequality

|u(r)|γ ≤ 1
γ

(ˆ ∞
r

|u′(s)|2sN−1 ds
) 1

2
(ˆ ∞

r

|u(s)|p

s
N−α

2 +δ
sN−1 ds

) γ−1
p
(ˆ ∞

r

ds
s1+δ

) 1
2−

γ−1
p

,

where
δ = N − 2 + N + α

p
(γ − 1).

Since δ > 0, we deduce in view of proposition 3.8 and the explicit computation of the last integral
that

|u(x)|γ ≤ C

|x| δ2

(ˆ
RN
|Du|2

) 1
2
(ˆ

RN
|Iα ∗ |u|p|2

) γ−1
2p
.

Since θ ≥ 1
1+ p

2
, we conclude by taking γ = 1

θ so that in particular δ = β
2θ . �

Claim 2. Estimate (6.4) holds if β = θN−2
2 + (1− θ)N+α

2p > 0 and θ ≥ 1
1+ p

1+α
.

Proof of the claim. We start from (6.8) with 1 ≤ γ < 2p+α+1
2+α and apply the generalized Hölder

inequality to obtain

|u(r)|γ ≤ 1
γ

(ˆ ∞
r

|u′(s)|2sN−1 ds
) 1

2
(ˆ ∞

r

|u(s)|2
2p+α
2+α sN−1 ds

) (γ−1)(2+α)
2(2p+α)

(ˆ ∞
r

ds
s1+δ

) 1
2−

(γ−1)(2+α)
2(2p+α)

,

where
δ = 2(N − 1)

1− (γ−1)(2+α)
2p+α

−N.

and therefore

|u(r)|γ ≤ C

|x|
N−2

2 + (γ−1)N(2+α)
2p+α

(ˆ ∞
r

|u′(s)|2sN−1 ds
) 1

2
(ˆ ∞

r

|u(s)|2
2p+α
2+α sN−1 ds

) (γ−1)(2+α)
2(2p+α)

.

We observe that this inequality also holds when γ = 2p+α+1
2+α by the Cauchy–Schwarz inequality

and the fact that s ≥ r in the integrals.
We deduce from proposition 3.1 that if δ > 0,

|u(x)|γ ≤ C ′

|x|
N−2

2 + (γ−1)N(2+α)
2p+α

(ˆ
RN
|Du|2

) 2p+γα
2(2p+α)

(ˆ
RN
|Iα ∗ |u|p|2

) γ−1
2p+α

.

We take
γ = 2p

θ2p− (1− θ)α.

It is clear that γ ≥ 1. Moreover, since θ > 1
1+ 2p

α+1
, we have γ < 2p+α+1

2+α , so that the conclusion
follows. �

Claim 3. The assumptions of theorem 9 are necessary for estimate (6.4) to hold.

Proof of the claim. First we remark that when N = 2, the estimate cannot hold if β = 0: indeed if
u ∈ C1(R2 \ {0}) is radial, suppu is compact and u(x) = (log|x|)γ for some γ ∈ (0, 1/2) for x in a
neighbourhood of 0, then u ∈ Eα,prad (RN ) but u is unbounded.

The necessity of all other conditions follows directly from the examples of lemmas 6.1 and 6.2. �

This completes the proof of theorem 9. �
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The proof of Claim 2 also works when β = 0 and θ = 1+α
1+p+α and gives back the proof of

Theorem 6.
Using uniform estimates of theorem 9, we are going to prove a weighted version of the radial

embedding of theorem 4. The weight will be used later in order to prove compactness of the
embedding.

Proposition 6.5 (Weighted radial embedding). Let N ≥ 2, α ∈ (0, N), γ ∈ R, p ≥ 1 and q ≥ p.
If p(N − 2) 6= N + α,

1− p
q

1 + p
1+min(1,α)

< θ < 1,

and
N − γ
q

= θ
N − 2

2 + (1− θ)N + α

2p ,

then for every u ∈ Eα,prad (RN ),
ˆ
RN

|u(x)|q

|x|γ
dx ≤ C

(ˆ
RN
|Du|2

) θ
2
(ˆ

RN
|Iα/2 ∗ |u|p|2

) 1−θ
2
.

If α > 1, the assumptions reduce to

either 1
p
>
N − 2
N + α

and N − 2
2(N − γ) <

1
q
<

3N + α− 4
2(p(2N − 2− γ)− (N − α− 2γ)) ,

or 1
p
<
N − 2
N + α

and N − 2
2(N − γ) >

1
q
>

3N + α− 4
2(p(2N − 2− γ)− (N − α− 2γ)) .

(Qrad,γ)

Proof. If 1
p >

N−2
N+α , then for every θ∗ ≥ 1/(1 + p/(1 + min(1, α))) and β∗ = θ∗N−2

2 + (1− θ∗)N+α
p

by Theorem 9, we have

|u(x)| ≤ C

|x|β∗

(ˆ
RN
|Du|2

) θ∗
2
(ˆ

RN
|Iα/2 ∗ |u|p|2

) 1−θ∗
2p

.

Since 1/(1 + p/(1 + min(1, α))) < θ < 1 and N−γ
q = θN−2

2 + (1− θ)N+α
2p , we can choose θ∗ ∈ (θ, 1)

such that γ + β∗q < N , and we have thus
ˆ
BR

|u(x)|q

|x|γ
dx ≤ Cq

(ˆ
RN
|Du|2

) θ∗q
2
(ˆ

RN
|Iα/2 ∗ |u|p|2

) (1−θ∗)q
2p

ˆ
BR

1
|x|γ+β∗q

dx

≤ C ′

Rγ+β∗q−N

(ˆ
RN
|Du|2

) θ∗q
2
(ˆ

RN
|Iα/2 ∗ |u|p|2

) (1−θ∗)q
2p

.

(6.9)

On the other hand, by theorem 9 again we have
ˆ
RN\BR

|u(x)|q

|x|γ
dx ≤ Cq−p

(ˆ
RN
|Du|2

) θ∗(q−p)
2

(ˆ
RN
|Iα/2∗|u|p|2

) (1−θ∗)(q−p)
2p

ˆ
RN\BR

|u(x)|p

|x|γ+β∗(q−p) dx,

with θ∗ = 1/(1 + 1/(1 + min(1, α))). By our assumption θ > (1− p
q )/(1 + 1/(1 + min(1, α))), we

have
γ + β∗(q − p) = N − α

2 +
(N + α

2p − N − 2
2

)(
qθ − (q − p)θ∗

)
>
N − α

2
By our assumption , we have γ + β∗(q − p) > N−α

2 , and thus by the estimate of proposition 3.8,

(6.10)
ˆ
RN\BR

|u(x)|q

|x|β
dx ≤ Cq−p

Rγ+β∗(q−p)−N−α
2

(ˆ
RN
|Du|2

) θ∗(q−p)
2

(ˆ
RN
|Iα/2 ∗ |u|p|2

) (1−θ∗)q−θ∗p
2p

.

The result follows by combining the estimates (6.9) and (6.10) and optimizing with respect to
R > 0.

The case 1
p <

N−2
N+α is similar. �

Theorem 4 follows directly from the previous results.
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Proof of theorem 4. The estimates follow from the weighted estimates of Proposition 6.5 in the
constant weight case γ = 0 and from the nonradial estimates of Theorem 1.

The necessity follows from Lemmas 6.1, 6.2 and 6.4. �

Next we are going to show that away from the end points of the embedding interval the
embedding Eα,prad (RN ) ⊂ Lq(RN ) is compact.

Proposition 6.6 (Compactness of the radial embedding). Let N ≥ 2, α ∈ (0, N) and p ≥ 1.
Assume that

1− p
q

1 + p
1+min(1,α)

<

N
q −

N+α
2p

N−2
2 − N+α

2p
< 1.

Then the embedding Eα,prad (RN ) ⊂ Lq(RN ) is compact. When α 6= 1 the conditions are also necessary
for compactness of the embedding.

Equivalently, we are assuming that either α ≤ 1 and (Q′) holds, or α > 1 and (Q′rad) holds.

Proof of proposition 6.6. Let (un)n∈N be a bounded sequence in Eα,prad (RN ) radial functions is
bounded. By proposition 2.5, by passing to a subsequence, we can assume that the sequence
(un)n∈N converges strongly in L1

loc(RN ) to u ∈ Eα,prad (RN ). In view of the uniform radial estimate
of theorem 9, the sequence (un)n∈N is bounded in L∞loc(RN \ {0}) and thus converges strongly in
Lqloc(RN \ {0}) to 0.

Moreover, in view of our assumptions, for γ ∈ R close to 0, the weighted estimates of Proposi-
tion 6.5 apply. In particular, we have for γ > 0,

sup
n∈N

R−γ
ˆ
BR

|un|q ≤ lim sup
n∈N

ˆ
RN

|un(x)|q

|x|γ
dx <∞,

and therefore
lim sup
R→0

sup
n∈N

ˆ
BR

|un|q = 0.

Similarly, for γ < 0 close enough to 0, we have

sup
n∈N

Rγ
ˆ
RN\BR

|un|q ≤ lim sup
n∈N

ˆ
RN

|un(x)|q

|x|γ
dx <∞,

and thus
lim sup
R→∞

sup
n∈N

ˆ
RN\BR

|un|q = 0.

It follows that the sequence (un)n∈N converges strongly to u in Lq(RN ).
When α 6= 1 as a result of lemma 6.1, lemma 6.2 and lemma 6.4, the conditions are also necessary

for the compactness of the embedding. �

In the case α = 1 the compactness of the critical embedding E1,p
rad(RN ) ⊂ L 2

3 (2p+1)(RN ) in the
case (N − 2)p 6= N + 1 is an open question.

7. Existence of radially symmetric solutions and proof of theorem 5

Consider the radial minimization problem
(7.1) Mc,rad = inf

u∈Ac,rad
E∗(u)

where E is the energy functional defined in (5.4),

Ac,rad = {u ∈ Eα,prad (RN ) :
ˆ
RN
|u|q = c},

and c > 0. Since the rescaling relation (5.6) also applies to Mc,rad, in what follows we can restrict
ourself to the case c = 1.

Proposition 7.1. Let N ≥ 2, α ∈ (0, N), p ≥ 1. Assume that either α ≤ 1 and assumption (Q′)
holds, or α > 1 and assumption (Q′rad) holds. Then all the minimising sequences for M1,rad in
(7.1) are relatively compact in Eα,prad (RN ). In particular, the best constant M1,rad is achieved.
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Proof. Let (un)n∈N ⊂ A1,rad be a minimizing sequence for M1,rad. By the minimization property,
we have supn∈N E∗(un) <∞. In view of proposition 2.5 and proposition 2.4, up to a subsequence,
(un)n∈N converges to a function u ∈ Eα,p(RN ) strongly in L1

loc(RN ). Moreover, E∗(u) ≤ M1,rad.
By proposition 6.6, the embedding Eα,prad (RN ) ⊂ Lq(RN ) is compact. Hence, (un)n∈N converges to
u strongly in Lq(RN ), u ∈ A1,rad and E∗(u) = M1,rad. Therefore, the sequence (Dun)n∈N converges
strongly to Du in L2(RN ), while the sequence (Iα/2 ∗ |un|p)n∈N converges strongly to Iα/2 ∗ |u|p in
L2(RN ) by the Brezis–Lieb property of proposition 4.7. �

Proof of theorem 5. The compactness part of the statement of the theorem is contained in propo-
sition 6.6. The existence of a minimiser w ∈ Eα,prad (RN ) for M1,rad follows from proposition 7.1.
Since |w| ∈ Eα,prad (RN ) is also a minimiser for M1,rad, we can assume that w is nonnegative. Since
p > 1, the energy E is of class C1(Eα,prad (RN );R) and by the Palais symmetric criticality principle
[58, theorem 1.28], w is a weak solution of

(7.2) −∆w + (Iα ∗ |w|p)|w|p−2w = qµ|w|q−2w in RN ,

with a Lagrange multiplier µ > 0.
Local regularity of w follows via the same arguments as in the proof of proposition 5.3, but

using the radial Coulomb–Sobolev embedding of theorem 4 in order to estimate the norm in (5.9).
In addition to local regularity, uniform decay estimate of theorem 9 implies that w(|x|) → 0 as
|x| → ∞. Finally, positivity of w for p ≥ 2 follows by the arguments of proposition 5.4.

If q 6= 2 2p+α
2+α , then as in (5.7), minimizer w can be rescaled to a solution of the original equation

(SPS) with µ = 1. On the other hand, if q = 2 2p+α
2+α then (7.2) is invariant with respect to

the scaling (5.7). In this case, using Pohožaev identity of proposition 5.5, similarly to Pohožaev
relations (5.12) and since E∗(w) = M1,rad, we compute that

µ = 2M1,rad
(N − 2)p− (N + α)

2N(p− 1)− q(2 + α) .

In particular, if q = 2 2p+α
2+α then µ = M1,rad, and this concludes the proof. �

Remark 7.1. The significance of the threshold q = 2 2p+α
2+α in the statement of theorem 5 is clarified

by the analysis of the geometry of the unconstrained energy functional

J∗(u) = 1
2

ˆ
RN
|Du|2 + 1

2p

ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2 − 1
q

ˆ
RN
|u|q.

Similarly to the arguments in [49, theorem 1.3], one can show that if the assumption (Q′) holds,
then J∗ has a mountain pass geometry on Eα,prad (RN ). On the other hand, if α > 1 and the
complementary to (Q′) assumption

either 1
p
>

(N − 2)+

N + α
and 1

2 −
p− 1
α+ 2p <

1
q
<

3N + α− 4
2(2p(N − 1) +N − α) ,

or 1
p
<

(N − 2)+

N + α
and 1

2 −
p− 1
α+ 2p >

1
q
>

3N + α− 4
2(2p(N − 1) +N − α)

(Q′′)

holds, then J∗ is coercive on Eα,prad (RN ) and infu∈Eα,prad (RN ) J∗(u) < 0.
Indeed, a scaling argument similar to [49, p. 361] together with the continuous radial embedding

of Eα,prad (RN ) into Lq(RN ) shows that there exists a constant C > 0 such that

(7.3) J∗(u) ≥ E∗(u)− CE∗(u)
2N(p−1)−(2+α)q
2(p(N−2)−N−α) ,

where E∗ is defined in (5.4). Then (Q′) implies that u = 0 is a strict local minimum of J∗, while if
the assumption (Q′′) holds then J∗ is coercive on Eα,prad (RN ).

If p > 1, then for u ∈ Eα,prad (RN ) \ {0} and λ > 0 we define

uλ(x) = λ
2+α

2(p−1)u(λx).
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Then

J∗(uλ) = λ
2+α+(2−N)(p−1)

p−1

(1
2

ˆ
RN
|Du|2 + 1

2p

ˆ
RN

∣∣Iα/2 ∗ |u|p∣∣2)− λ (2+α)q−2N(p−1)
2(p−1)

1
q

ˆ
RN
|u|q.

If (Q′) holds then J∗(uλ) is unbounded below, while (Q′′) implies that J∗(uλ) attains negative
values for small λ > 0.

Finally, if (Q′′) holds and p = 1, then for u ∈ Eα,prad (RN ) \ {0} and λ > 0,

J∗(λu) = λ2
(1

2

ˆ
RN
|Du|2 + 1

2p

ˆ
RN

∣∣Iα/2 ∗ |u|∣∣2)− λq 1
q

ˆ
RN
|u|q.

Since q < 2 in view of (Q′′) we conclude that J∗(λu) attains negative values for small λ > 0.
This geometric characterisation of J∗ combined with the compactness of the embedding of

Eα,prad (RN ) into Lq(RN ) could be used to provide an alternative proof of the existence of the radial
solution of (SPS) via direct minimization or via mountain–pass lemma, similarly to [48, 49],
where the case N = 3, p = 2, α = 2 was considered. Such approach however excludes the
Coulomb–Sobolev critical case q = 2 2p+α

2+α .

Remark 7.2. Let p 6= N+α
N−2 , q = 2 2p+α

2+α and u ∈ Eα,p(RN ) be a nontrivial solution of

−∆u+ (Iα ∗ |u|p)|u|p−2u = qµ|u|q−2u in RN .
Then following universal bound holds for µ:
(7.4) µ ≥M1,rad.

In order to see this notice that in view of the relation (5.6), taking into account that for q = 2 2p+α
2+α

we have 2σ/q = 1, we can rewrite the Coulomb-Sobolev inequality (1.9) as

M1,radC
−1
∗

ˆ
RN
|u|2

2p+α
2+α ≤

(ˆ
RN
|Du|2

) α
2+α
(ˆ

RN
|Iα/2 ∗ |u|p|2

) 2
2+α

.

By combining Pohožaev’s and Nehari’s identities the above inequality becomes

(7.5) M1,radC
−1
∗ ≤ µ22p+ α

2 + α

(
θ
) α

2+α
(

1− θ
) 2

2+α
.

Here θ = α
2p+α and C∗ =

((
2
α

) α
α+2 +

(
2
α

)− 2
α+2
)(

1
2p

2
α+2

)
. It is easy to check that

C∗2
2p+ α

2 + α
θ

α
2+α (1− θ)

2
2+α = 1.

Hence (7.4) follows.
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