No Cover Image

Journal article 960 views

Improvement to thin film CdTe solar cells with controlled back surface oxidation

S.L. Rugen-Hankey, A.J. Clayton, V. Barrioz, G. Kartopu, S.J.C. Irvine, J.D. McGettrick, D. Hammond, James McGettrick Orcid Logo, Stuart Irvine Orcid Logo

Solar Energy Materials and Solar Cells, Volume: 136, Pages: 213 - 217

Swansea University Authors: James McGettrick Orcid Logo, Stuart Irvine Orcid Logo

Full text not available from this repository: check for access using links below.

Abstract

Thin film CdTe solar cells were produced by MOCVD, at atmospheric pressure, under a hydrogen atmosphere (i.e. oxygen-free). Window layer alloying with zinc (forming Cd1−xZnxS) and extrinsic p-type doping with arsenic (giving CdTe:As) have been used to improve photovoltaic solar cell performances, bu...

Full description

Published in: Solar Energy Materials and Solar Cells
ISSN: 0927-0248
Published: 2015
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa29569
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Thin film CdTe solar cells were produced by MOCVD, at atmospheric pressure, under a hydrogen atmosphere (i.e. oxygen-free). Window layer alloying with zinc (forming Cd1−xZnxS) and extrinsic p-type doping with arsenic (giving CdTe:As) have been used to improve photovoltaic solar cell performances, but as-grown MOCVD-CdTe PV cells are still typically characterised by low Voc (~620–690 mV). Post-deposition annealing in air for 30 min at low temperature (170 °C) prior to evaporation of the back contacts led to significant increases in Voc and FF. XPS measurements revealed back surface oxidation, resulting in formation of Te–O species. This was also the case for a device aged under ambient laboratory conditions. Extended annealing in air of a fresh device, for up to 180 min, continued to improve both Voc and FF. At longer annealing times the Voc remained relatively stable whilst the FF started to deteriorate. External quantum efficiency showed loss of photocurrent generation after excessive oxidation prior to back contact metallisation. Controlled back surface oxidation resulted in Voc values exceeding 800 mV and a best cell efficiency of 15.3%.
Keywords: CdTe; Thin film; Photovoltaics; Open-circuit voltage; MOCVD
College: Faculty of Science and Engineering
Start Page: 213
End Page: 217