No Cover Image

Journal article 1207 views 304 downloads

Creep deformation mechanisms in a γ titanium aluminide

Zak Abdallah, Rengen Ding, Nigel Martin, Mark Dixon, Martin Bache

Materials Science and Engineering: A, Volume: 673, Pages: 616 - 623

Swansea University Authors: Zak Abdallah, Martin Bache

Abstract

Titanium aluminides (TiAl) are considered as potential alternatives to replace nickel-based alloys of greater density for selected components within future gas turbine aero-engines. This is attributed to the high specific strength as well as the good oxidation resistance at elevated temperatures. Th...

Full description

Published in: Materials Science and Engineering: A
ISSN: 0921-5093
Published: 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa29379
Abstract: Titanium aluminides (TiAl) are considered as potential alternatives to replace nickel-based alloys of greater density for selected components within future gas turbine aero-engines. This is attributed to the high specific strength as well as the good oxidation resistance at elevated temperatures. The gamma (γ) titanium aluminide system Ti-45Al-2Mn-2Nb has previously demonstrated promising performance in terms of its physical and mechanical properties. The main aim of the current study, which is a continuation of a previously published paper, aims at evaluating the performance of this titanium aluminide system under high temperature creep conditions. Of particular interest, the paper is strongly demonstrating the precise capability of the Wilshire Equations technique in predicting the long-term creep behaviour of this alloy. Moreover, it presents a physically meaningful understanding of the various creep mechanisms expected under various testing conditions. To achieve this, two creep specimens, tested under distinctly different stress levels at 700 °C have been extensively examined. Detailed microstructural investigations and supporting transmission electron microscopy (TEM) have explored the differences in creep mechanisms active under the two stress regimes, with the deformation mechanisms correlated to Wilshire creep life prediction curves.
Item Description: Erratum published at http://dx.doi.org/10.1016/j.msea.2016.09.051The publisher regrets that there has been a mistake made in the body of the text.On page 621, the sentence beginning with “The beam direction is close to…” should read “The beam direction is close to [1View the MathML source0]…” and NOT “[1–10]”. This is not a citation to references but a slip plane system in materials science.The publisher would like to apologise for any inconvenience caused.
Start Page: 616
End Page: 623