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Abstract 
 
Titanium aluminides (TiAl) are considered as potential alternatives to replace nickel-based 

alloys of greater density for selected components within future gas turbine aero-engines. This 

is attributed to the high specific strength as well as the good oxidation resistance at elevated 

temperatures. The gamma () titanium aluminide system Ti-45Al-2Mn-2Nb has previously 

demonstrated promising performance in terms of its physical and mechanical properties. The 

main aim of the current study, which is a continuation of a previously published paper, aims at 

evaluating the performance of this titanium aluminide system under high temperature creep 

conditions. Of particular interest, the paper is strongly demonstrating the precise capability of 

the Wilshire Equations technique in predicting the long-term creep behaviour of this alloy. 

Moreover, it presents a physically meaningful understanding of the various creep mechanisms 

expected under various testing conditions. To achieve this, two creep specimens, tested under 

distinctly different stress levels at 700
o
C have been extensively examined. Detailed 

microstructural investigations and supporting transmission electron microscopy (TEM) have 

explored the differences in creep mechanisms active under the two stress regimes, with the 

deformation mechanisms correlated to Wilshire creep life prediction curves.  
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1. Introduction 

 
Titanium aluminides represent an important class of material due to their unique physical and 

mechanical properties, providing potential weight savings in gas turbine aero-engine 

components. Over thirty years of intensive research was conducted before titanium aluminides 

reached sufficient maturity for entry into service as critical rotating components in aircraft jet 

engines [1]. The ordered crystallography of this class of material provides attractive properties 

such as the high melting point, low density, high elastic modulus and low diffusion coefficient, 

in addition to good resistance to oxidation and corrosion. Titanium alumindes are superior in 

terms of their specific strength and temperature properties, in particular across the temperature 

range 500 to 900 oC, when compared to competing alloys such as conventional titanium, steel 

and nickel-based materials [2]. However, the shortfalls of this class of material are the low 

ductility (typically about 1% recorded at room temperature) alongside problematic formability 

and poor resistance to crack propagation.  
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Titanium aluminide alloys are categorised according to the content of the corresponding 

elements in the alloy with aluminium (Al) ranging between 45 and 48 (at. %) alongside the 

other elements which range between 1 and 10 (at. %), where the remaining balance of the 

alloy is titanium (Ti). Other constituent elements can be vanadium (V), chromium (Cr), 

manganese (Mn), niobium (Nb), tantalum (Ta) or molybdenum (Mo). Unique chemical 

compositions provide either a single phase -TiAl or a double phase -TiAl accompanied with 

2 (Ti3Al). The single phase alloys typically contain Nb or Ta to improve the strength and 

oxidation resistance whereas the double phase alloys contain V, Cr or Mn to improve the 

ductility. The addition of boron (B) or magnesium (Mg) is to enhance the hot workability and 

formability of the alloy. To improve the creep performance of the alloy, tungsten (W) and/or 

carbon (C) are often added [2].  

 

Four main sub-categories of titanium alumindes are recognised according to microstructural 

form, namely near-, duplex, near lamellar and fully lamellar. The fully lamellar and near 

lamellar variants, consisting of -phase along with small fractions of 2-phase, exhibit superior 

creep resistance, fracture toughness and crack propagation resistance when compared to the 

duplex or near-variants. Due to the fact that future engine designs may employ titanium 

alumindes under creep dominated environments, the content of Al in such alloys is maintained 

around 46% (at. %) to provide the optimum static performance [2].  

 

Extensive research has taken place over the past three decades to optimise intermetallic 

alloys with an acceptable level of ductility. The first significant advancement was achieved by 

introducing elements, such as niobium (Nb), that stabilise the β phase to attain reasonable 

levels of ambient temperature ductility and an improved creep performance and oxidation 

resistance when compared to other conventional titanium alloys [3], [4]. At the same time, the 

addition of manganese (Mn) has also resulted in an enhancement of the room temperature 

ductility [5]. Based on these findings, focus has been placed on alloys with an equivalent 

aluminium content ranging between 45 and 50%, with the system Ti-45Al-2Mn-2Nb, which has 

a fully lamellar microstructure, proving to be of particular interest towards service applications 

[6].  

 

A previous assessment of creep behaviour has been published from this laboratory on the 

system Ti-45Al-2Mn-2Nb [7]. The current investigation was designed to extend our 

understanding of the various creep deformation mechanisms activated under different regimes 

of applied stress and therefore implicated in generating extremes in rupture life.  

 

 

2. Characterisation Procedures 
 

The selected TiAl intermetallic alloy, Ti-45Al-2Mn-2Nb (containing 0.8 vol. %TiB2 to control 

grain refinement), was supplied in the cast and HIP’ed condition with a fully lamellar 

microstructure. Cylindrical creep specimens were machined from the stock material with a 

finished diameter of 5.6mm and a gauge length of 28.0mm. Creep testing was carried out 

according to the guidelines of the ISO 204 standard but utilising constant-stress machines at 

temperatures in the range 625-750
o
C and stresses between 150 and 550MPa. The elongation 

of specimens during the test was monitored using dual averaging parallel extensometers which 
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employ high precision LVDTs. The specimen temperature was measured using calibrated 

type-R thermocouples. A full description of the equipment employed in the current research 

paper can be found elsewhere [8]. For the scanning electron microscopy (SEM) investigations, 

the samples were sectioned on an orthogonal plane relative to the fracture surface. This 

allowed the examination of the fracture surface features and underlying grain morphology. The 

optical microscopy (OP) samples were auto-polished using 220 MD-Piano, MD-Plan and MD-

Chem discs with the aid of suspension polishing liquids to produce a mirror-like finish. The 

microstructure was then revealed using a solution of H2O (25ml) + HNO3 (25ml) + HF (2ml) + 

glycerine (50ml) on the polished surfaces. In order to investigate the creep deformation 

mechanisms, transmission electron microscopy (TEM) observations were carried out on a FEI 

Tecnai F20 operating at 200 kV. Flat TEM discs of 0.2 mm thickness and 3mm diameter were 

sectioned  perpendicular to the axial length of the crept specimens in addition to untested 

specimens for comparison.  These discs were then thinned to perforation using a twin jet 

electro-polisher in 5% perchloric acid, 35% butanol and 60% methanol solution at – 30°C with 

an applied voltage of 25 V. 

 

 

3. Creep Modelling 
 
Full creep curves were generated from the individual tests allowing the time to fracture, creep 

ductility and the minimum creep rate properties to be defined. In a previously published paper 

[7], the Wilshire Equations technique was employed to model the creep behaviour of the same 

intermetallic alloy. The predictions were reasonably accurate with the time to fracture and 

minimum creep rate properties precisely estimated using this model. In addition, as part of the 

current paper is data from the longest test carried out during this programme of work, with a 

total creep life of 9,182 hours (almost 13 months) measured at 190MPa and 700
o
C. The main 

aim of this long-term test was to confirm whether this data point could be predicted via 

extrapolation of the previous, relatively shorter life creep data generated through analysis 

based on the Wilshire model.  

 

Furthermore, the specimen relating to this long-term result along with the shortest term 

specimen, both tested at 700
o
C, would be the focus of detailed characterisation to describe the 

creep deformation and failure mechanisms. With reference to the Wilshire stress-rupture 

predictions, see Figure 3, these two specimens deliberately fall above and below the distinct 

“kink” in the curves, a point that divides the isothermal curves into “high” (upper-left) and “low” 

(bottom-right) stress regimes distinguished by different slopes. It was postulated that the two 

regimes may correspond to different creep deformation mechanisms. It has been found during 

previous studies, assessing the conventional titanium alloy Timetal 834 as well as Ti-45Al-

2Mn-2Nb, that the ‘kink’ point approximately correlates to the bulk yield stress of the material, 

which implies that varying creep mechanisms are taking place within the upper and lower 

regimes, [9], [7].  
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4. Results  

 
The microstructure of the alloy, revealed after etching, showed a fully lamellar nature, Figure 1. 

In this context, the grain (or colony) is defined as the region where the lamellae have the same 

alignment. The colony boundaries contain interlocking, overlapping lamellae imparting 

additional strength to the boundaries during deformation of the material. The spacing between 

the lamellae will influence the creep behaviour, confirmed elsewhere [10]. The measured 

average colony size of the current material was approximately 90m, similar to the material 

assessed by [11] .  

 
 

Full creep curves, i.e. strain versus time, were obtained with distinctive primary, secondary and 

tertiary stages, Figure 2. The primary region is the area of a decaying creep rate on the 

contrary to the tertiary stage which is characterised by accelerating creep deformation [12]. 

These curves provide information on the creep life when the sample ruptures, tr, alongside the 

total creep ductility, εr, of the alloy. The slope at any point along the curve, έ, is defined as the 

strain rate at that particular point which can be evaluated by dividing the change in strain by 

the change in time (έ = dε/dt), Figure 2. Generally, the creep rate in the primary region 

decreases, remains constant in the secondary region, or sometimes reaches a minimum value 

which is called the minimum creep rate έm, and then finally increases throughout the tertiary 

region leading on to fracture. The creep life, tr, was found to be inversely proportional to stress, 

σ, and temperature, T, unlike the strain rate, έ, which is always proportional to either increase 

in σ or T [13], (Wilshire & Evans, 1993).  
 

 

The relationship between σ, T, tr and έ is defined by the power law equation: 
 

 
1/ tr      έm = A σn exp (-Qc/RT)                         ………………..(1) 

 
 

where A is a material constant, n is the stress exponent, Qc is the minimum amount of energy 

required to initiate creep (i.e. activation energy) and R is the gas constant (8.314 J/mol K). It 

was found elsewhere [7] that the value of the stress exponent (n) for this material lies between 

5 and 7 (for temperatures 675-750
o
C at low stress level) and between 8 and 11 (for 

temperatures 625-650
o
C at high stress level). Similarly, it has been found that the value of the 

activation energy (Qc) varied between ~ 255 to ~ 520 kJ/mol K. This suggests that the 

variability of such ‘constants’ reveals that there might be a change in creep mechanism with 

changing conditions from high to low stress regimes at varying testing temperatures. These 

findings formed the rationale for the current paper, i.e. the selection of two specimens, both 

tested at 700
o
C but under two extreme loading conditions (the lowest and highest applied 

stress) in order to compare their creep behaviour. 

 
 

4.1 Stress-Rupture Results 

 
 

Great emphasis is placed upon the development of a predictive tool capable of precisely 

forecasting the stress rupture behaviour of materials using simple and physically meaningful 
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equations. There have been extensive efforts in this area of research applying numerous 

predictive techniques to titanium alumindes, steels and titanium alloys [7], [14] and [15]. The 

results obtained in these studies have shown that the physical creep behaviour has been 

simulated and predicted well using the Wilshire Equations technique [16] :  
 
 

σ/σTS = exp (-k1 [tf  exp (-Qc
*/RT)]

u
) 

 
 

where σ is the applied stress, σTS is the ultimate tensile strength, k1 and u are fitting constants, 

tf is the time to fracture, Qc* is the activation energy for creep that is obtained at constant σ/σTS, 

R is the gas constant and T is the applied temperature. It is worthwhile mentioning that 

detailed procedures for evaluating the value of k1, u and Qc* are published elsewhere [9], [7]. 

The results obtained in a former study [7] using the predictions of the Wilshire Equations 

technique are shown in Figure 3.  

 
Since a previous publication in 2013, a long term test conducted at a stress of 190MPa has 

reached completion. The data point relating to this specimen is superimposed on Figure 3. It is 

noted that it corresponds well to the previously predicted stress-rupture trend curve.  This 

specimen plus that relating to the test performed at 375MPa at the same temperature of 700
o
C 

are circled as the specimens selected for detailed characterisation, given that they lie below 

and above the associated “kink” point in the prediction curve respectively.   

 
4.2 Characterisation of high and low stress regime specimens tested at 700

o
C 

 
4.2.1 Creep Curves  

 
Full creep curves were recorded for the two specimens as shown in Figure 4. Due to the 

significant variation in creep life between these two samples (354 and 9,182 hours), the curves 

are plotted on a log-scale graph in order to illustrate the comparable shapes of the curves. The 

ductility achieved at the higher stress level was slightly larger than that achieved at the lower 

stress. In this format it is difficult to differentiate the various stages of each creep curve, i.e. the 

decaying primary, steady state secondary and accelerating tertiary stages. This can better be 

demonstrated by plotting the strain rate, at each point along the original creep curves, against 

the corresponding time as shown in Figure 5.  

 
It can be seen that the primary stage (i.e. decaying strain rate) persists for approximately 10% 

of the total creep life recorded for the high stress specimen at 375MPa in comparison to more 

than 50% for the test performed at 190MPa. 

 
This suggests that the specimen tested at 190MPa experienced strain hardening for the 

majority of its life (i.e. a higher dislocation density is expected within the microstructure). There 

is no significant secondary (recovery) stage relating to this test which suggests that any newly 

generated dislocations may not be annihilated during ongoing creep. At the higher stress level, 

it could be expected that a relatively higher dislocation density would prevail, however, from 

Figure 5, it is apparent that a period of recovery occurs during which dislocations could be 

annihilated. At the relatively high stress level, even though more dislocations may be 
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generated the spacing between them would be shorter which facilitates their subsequent 

annihilation (and vice versa at the lower stress level. This infers that the movement and 

annihilation of dislocations at the higher stress level is more rapid than that at the lower stress 

level. This theory will be supported by the TEM results to follow.   

 
 

4.2.2 Optical Microscopy  
 
 

Optical images taken from the two crept samples are shown in Figure 6. It was noted that the 

higher stress sample contained more interlamellar and intercolony cracking than that at the 

lower stress level. These internal cracks would accelerate the creep fracture mechanism and 

induce a shorter life when compared to the lower stress sample. This infers that a relatively 

large proportion of the strain damage is consumed in moving the colonies and the lamellae 

apart from each other rather than generating intra-colony dislocations. In contrast, strain 

accumulation in the low stress sample was presumably largely due to a process of generating 

and moving dislocations. The lack of recovery noted at this lower stress level (Figure 5) may 

suggest dislocations increase in density and interact, increasing the creep resistance and 

characterised by the decreasing strain rate observed in this sample.  

 
 
4.2.3 Scanning Electron Microscopy 

 
Scanning electron microscopy (SEM) images are shown in Figure 7. It is apparent that there is 

a difference in fracture appearance between the two samples. The higher stress sample 

showed a rougher fracture surface resulting from interlamellar and translamellar cracking and 

delamination of the lamellar structure (facets). This correlates to the internal cracking between 

the lamellae colonies as observed in Figure 6. In contrast, the lower stress sample showed a 

relatively ductile, dimpled fracture surface with fewer facets. Fracture in this sample, however, 

continues to focus along the grain boundaries.  

 

 
4.2.4 Transmission Electron Microscopy  

 
Transmission electron microscopy (TEM) images are shown in Figure 8. For comparison, an 

image from the parent, un-tested material is illustrated, taken under a bright field many-beam 

condition wherein only low density dislocations can be seen. These must be the inherent 

dislocations formed during casting and lamellar transformation that have survived the post-cast 

HIPping and heat treatment. Alongside the above, dislocations might have been formed during 

the mechanical preparation of the foils prior to TEM examination. In comparison, the specimen 

crept at 700°C and 190MPa has a denser dislocation structure when viewed in a bright field 

two-beam image. The beam direction is close to [1-10] and the operating vector is g = (111), 

identical to that employed for similar investigations [17]. Under such two-beam conditions, 

some dislocations could lack contrast, however, those in contrast still indicate a high 

dislocation density. This leads to the conclusion that creep deformation has taken place 

extensively through dislocation gliding and climbing under these conditions. Detailed 

observation reveals dislocations are elongated and pinned at many locations along their 
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length. Moreover, the segments on either side of these pinning points are significantly bowed. 

This may be due to the presence of jogs or extrinsic pinning due to fine precipitates such as 

oxides, etc. This behaviour has also been observed in other studies on intermetallic TiAl alloys 

[17]. 

 

The TEM image taken from the sample tested at 375MPa and 700°C is significantly different. 

In addition to a relatively higher dislocation density with less pinning and bowing, it is evident 

that twinning is a prominent feature at this condition. This is apparent in the bright field two-

beam TEM image in which a high density of twins can be seen across  lamellae. Twinning in 

crept TiAl alloys has long been observed [18]. However, there has been no systematic study 

on the relationship between twinning and creep deformation parameters. Hsiung et al. [18] 

reported observations of twinning in lamellar TiAl alloys crept at both low and high stress levels 

but twinning only commenced once deformation entered the secondary creep stage, indicating 

that that twinning is a strain-related phenomenon. Other workers have suggested that a critical 

combination of high creep stress and sufficient creep strain encourages the formation of twins 

[19], [20]. In the present study, it is pertinent to note the relatively higher levels of ductility 

observed within the high stress regime, Figure 4, and the associated prevalence of twinning. 

Twins have also been implicated as the preferential site for creep crack initiation and 

subsequent propagation [21], consistent with the propensity of inter-colony cracking detected 

during the present study for the specimen tested at high stress.  
 

 
 

5. Discussion 

 

Firstly, in terms of mechanical performance, it was encouraging to note that the rupture life 

measured from the recently completed long-term creep test fell precisely on the Wilshire curve 

formerly predicted for this specific test temperature (700oC), Figure 3. This provides further 

evidence of the capability of the Wilshire technique in predicting such long-term creep 

behaviour for a wide range of metallic alloys. This long-term result fell within the low stress 

regime indicated by the Wilshire prediction, hence the decision to select this specimen to 

compare to a counterpart tested at relatively high stress with respect to potential differences in 

deformation mechanism. 

 

It is recognised that the TEM samples taken from the two specimens characterised during the 

present exercise provide a limited database from which to determine the creep mechanisms 

active across a range of stress and temperature conditions in the gamma titanium aluminide 

Ti-45Al-2Mn-2Nb. In addition, these have only provided post mortem inspections of dislocation 

structures as they were developed immediately prior to creep rupture and not throughout 

various stages of the creep life. For a full description of the creep mechanisms active across 

the stress regimes, multiple interrupted tests would be required, a task beyond the scope of 

the present work. Within these limitations, however, distinct differences in dislocation 

structures have been illustrated for the parent (untested) alloy and specimens subjected to 

relatively low and high stress conditions at 700oC. Of particular interest, this validates our 

original assumption that creep mechanisms differ in the regimes either side of the ‘kink’ in the 

Wilshire prediction curves, a point which typically corresponds to the bulk yield stress.  
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The individual creep tests have demonstrated classical creep deformation behaviour, 

characterised by primary, secondary and tertiary stages, Figure 4. The extent of each stage, 

however, was dependent on the creep conditions imposed and such behaviour is consistent 

with previous reports, [22]. For instance, the low stress test was dominated by primary creep 

contributing approximately 50% of the total creep life, in stark contrast to only 10% primary 

creep contribution at the high stress level, Figure 4 and Figure 5. Variations in the activation 

energy (Qc) and stress exponent (n) calculated for individual tests by use of the power law 

equation (equation 1) have been noted, [7]. The activation energy and stress exponent are 

generally proportional to the applied stress level. There is a strong understanding that high 

activation energy and stress exponent values are indicative of ‘dislocation’ creep, whereas low 

values of these two parameters represent ‘boundary diffusion’ creep [23]. Irrespective, the 

results obtained from the present study revealed that dislocation formation and twinning are 

the most dominant creep mechanisms at the low and high stress regimes respectively, with no 

evidence of diffusion creep mechanisms detected. 

 

The microstructure of the TiAl alloy, Figure 1, showed a fully lamellar microstructure 

characterised by lamellar colonies forming grains of various orientations. The spacing of the 

lamellae has a direct inverse proportionality relative to the creep resistance - i.e. smaller 

spacing provides greater creep resistance, [10]. The grain boundaries show an interactive 

zone whereby the ends of lamellae overlap and interlock in such a way that provides an 

additional resistance against sliding and intergranular fracture. Optical inspections,  Figure 6, 

showed two distinct fracture behaviours. The sample crept at the higher stress showed 

significantly greater inter-colony cracking suggesting that a large proportion of the strain 

accumulated at this condition was consumed in separating the colonies apart. In a study by 

Zhu et al. [10] on a similar alloy, it was confirmed that the 2 (Ti3Al) phase accumulates along 

grain boundaries during creep deformation. Since this phase is more brittle than the 

surrounding  phase [24], it is more susceptible to fracture under high stresses leading to inter-

colony cavities along the grain boundaries. The model suggested by Zhu et al. [10] is 

reproduced in Figure 9. The current SEM images suggest that a similar mechanism of 

intergranular brittle fracture, characterised by the facet formation resulting from the 

delamination of the lamellar microstructure. The fracture at the lower stress level appeared 

relatively ductile and characterised by dimple features.  

 

In Figure 8, it can be clearly seen that the dislocations were curved and randomly distributed 

within the structure, within gamma and 2 laths. The dislocations have mostly been generated 

at the lamellar interfaces and grain boundaries as observed in other studies on TiAl alloys [25]. 

The nature of the dislocations, in terms of bowing and pinning, has also been observed in TiAl 

[17]. The parallel twinning that occurs in TiAl under creep results in the refinement of the 

lamellar microstructure and leads to subsequent strengthening of the alloy [26]. Here, the term 

‘parallel’ twinning refers to the mechanism whereby twinning takes place along the {111} 

direction, i.e. the lamellar boundaries, and this results in the creation of additional  plates 

parallel to the original lamellar boundaries. A study on creep effects in lamellar microstructures 

[27] revealed that twinning mechanisms contribute greatest to the deformation in the early 

stages of creep, or under short-term / high stress creep conditions, in a similar fashion to that 

observed in the current study. It was also concluded that the higher the applied stress the 
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lower the spacing between the lamellae which confirmed that twinning was more pronounced 

at higher stress levels.  

 

6. Conclusions 

The following high level conclusions can be drawn from the present study: 

 

 The -TiAl alloy Ti-45Al-2Mn-2Nb exhibited classical creep behaviour characterised by 
primary, secondary and tertiary creep stages before fracture. 
 

 The Wilshire Equations technique proved capable of predicting the long-term creep 
behaviour of this alloy.  
   

 TEM investigations demonstrated distinct creep mechanisms active above and below the 
Wilshire prediction “kink”. 

 

 Dislocation creep was prevalent within the low stress regime and twinning of the lamellae at 
high stress. 
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Figure 1: Microstructure of the cast and HIP'ed Ti-45Al-2Mn-2Nb alloy. 

Figure 2: A typical creep curve for Ti-45Al-2Mn-2Nb at 675oC and 450MPa (left) and the various stages 
of the typical creep curve (right), (Wilshire & Evans, 1993). 

Figure 3: The Wilshire predictive curves applied to Ti-45Al-2Mn-2Nb creep data (Abdallah, 2013), 
highlighting the additional data point measured at 700oC and 190MPa plus the two specimens selected 
for characterisation (circled). 

Figure 4: Full creep curves for the two selected tests at 375MPa and 190MPa, both at 700
o
C. 

Figure 5: Strain rate plotted against time for the two selected tests at 375MPa and 190MPa, both at 

700
o
C. 

Figure 6: Optical micrographs of the samples tested at 375MPa (left) and 190MPa (right), both at 

700
o
C. 

Figure 7: Scanning electron microscopy images of the samples tested at 375MPa (left) and 190MPa 

(right), both at 700
o
C. 

 

Figure 8: Transmission electron microscopy (TEM) of the parent material (left) and the two crept 
specimens at 375MPa (middle) and 190MPa (right). 
 

 

Figure 9: A model of creep deformation in TiAl alloys (Zhu, 2004). 
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Figure 2: A typical creep curve for Ti-45Al-2Mn-2Nb at 675oC and 450MPa (left) and the various stages 
of the typical creep curve (right), (Wilshire & Evans, 1993). 
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Figure 3: The Wilshire predictive curves applied to Ti-45Al-2Mn-2Nb creep data (Abdallah, 2013), 
highlighting the additional data point measured at 700oC and 190MPa plus the two specimens selected 

for characterisation (circled). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Full creep curves for the two selected tests at 375MPa and 190MPa, both at 700
o
C. 
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Figure 5: Strain rate plotted against time for the two selected tests at 375MPa and 190MPa, both at 

700
o
C. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Optical micrographs of the samples tested at 375MPa (left) and 190MPa (right), both at 

700
o
C. 
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Figure 7: Scanning electron microscopy images of the samples tested at 375MPa (left) and 190MPa 

(right), both at 700
o
C. 

 
 
 
 
 
 
 

 
 

Figure 8: Transmission electron microscopy (TEM) of the parent material (left) and the two crept 
specimens at 375MPa (middle) and 190MPa (right). 
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Figure 9: A model of creep deformation in TiAl alloys (Zhu, 2004). 

 


