Journal article 1839 views
In situ monitoring and optimization of room temperature ultra-fast sensitization for dye-sensitized solar cells
Chem. Commun., Volume: 50, Issue: 83, Pages: 12512 - 12514
Swansea University Authors:
Matthew Davies , Trystan Watson
, Peter Holliman
, David Worsley
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1039/C4CC05766J
Abstract
We describe the fastest dyeing of TiO2 photo-electrodes for dye-sensitized solar cells reported to date (<2 min) at room temperature giving η = 7.5% for an N719–SQ1–CDCA mixture which is significantly higher than devices dyed for >12 h using the same dye mixture (η = 5.5%). Time-lapse photogra...
| Published in: | Chem. Commun. |
|---|---|
| ISSN: | 1359-7345 |
| Published: |
2014
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa18691 |
| first_indexed |
2014-10-11T01:30:04Z |
|---|---|
| last_indexed |
2021-01-14T03:33:20Z |
| id |
cronfa18691 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-01-13T13:15:31.3635066</datestamp><bib-version>v2</bib-version><id>18691</id><entry>2014-10-10</entry><title>In situ monitoring and optimization of room temperature ultra-fast sensitization for dye-sensitized solar cells</title><swanseaauthors><author><sid>4ad478e342120ca3434657eb13527636</sid><ORCID>0000-0003-2595-5121</ORCID><firstname>Matthew</firstname><surname>Davies</surname><name>Matthew Davies</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c8f52394d776279c9c690dc26066ddf9</sid><ORCID>0000-0002-9911-8513</ORCID><firstname>Peter</firstname><surname>Holliman</surname><name>Peter Holliman</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c426b1c1b0123d7057c1b969083cea69</sid><firstname>David</firstname><surname>Worsley</surname><name>David Worsley</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2014-10-10</date><deptcode>EAAS</deptcode><abstract>We describe the fastest dyeing of TiO2 photo-electrodes for dye-sensitized solar cells reported to date (<2 min) at room temperature giving η = 7.5% for an N719–SQ1–CDCA mixture which is significantly higher than devices dyed for >12 h using the same dye mixture (η = 5.5%). Time-lapse photography has been used to monitor the ultra-fast co-sensitization. The data show significantly different dye uptake between passive and pump dyeing reflecting competitive sorption between a Ru complex (N719) and an organic dye (SQ1).</abstract><type>Journal Article</type><journal>Chem. Commun.</journal><volume>50</volume><journalNumber>83</journalNumber><paginationStart>12512</paginationStart><paginationEnd>12514</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1359-7345</issnPrint><issnElectronic/><keywords/><publishedDay>25</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2014</publishedYear><publishedDate>2014-10-25</publishedDate><doi>10.1039/C4CC05766J</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-13T13:15:31.3635066</lastEdited><Created>2014-10-10T22:25:31.0294498</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Matthew</firstname><surname>Davies</surname><orcid>0000-0003-2595-5121</orcid><order>1</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>2</order></author><author><firstname>Peter</firstname><surname>Holliman</surname><orcid>0000-0002-9911-8513</orcid><order>3</order></author><author><firstname>Arthur</firstname><surname>Connell</surname><order>4</order></author><author><firstname>David</firstname><surname>Worsley</surname><order>5</order></author></authors><documents/><OutputDurs/></rfc1807> |
| spelling |
2021-01-13T13:15:31.3635066 v2 18691 2014-10-10 In situ monitoring and optimization of room temperature ultra-fast sensitization for dye-sensitized solar cells 4ad478e342120ca3434657eb13527636 0000-0003-2595-5121 Matthew Davies Matthew Davies true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false c8f52394d776279c9c690dc26066ddf9 0000-0002-9911-8513 Peter Holliman Peter Holliman true false c426b1c1b0123d7057c1b969083cea69 David Worsley David Worsley true false 2014-10-10 EAAS We describe the fastest dyeing of TiO2 photo-electrodes for dye-sensitized solar cells reported to date (<2 min) at room temperature giving η = 7.5% for an N719–SQ1–CDCA mixture which is significantly higher than devices dyed for >12 h using the same dye mixture (η = 5.5%). Time-lapse photography has been used to monitor the ultra-fast co-sensitization. The data show significantly different dye uptake between passive and pump dyeing reflecting competitive sorption between a Ru complex (N719) and an organic dye (SQ1). Journal Article Chem. Commun. 50 83 12512 12514 1359-7345 25 10 2014 2014-10-25 10.1039/C4CC05766J COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2021-01-13T13:15:31.3635066 2014-10-10T22:25:31.0294498 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Matthew Davies 0000-0003-2595-5121 1 Trystan Watson 0000-0002-8015-1436 2 Peter Holliman 0000-0002-9911-8513 3 Arthur Connell 4 David Worsley 5 |
| title |
In situ monitoring and optimization of room temperature ultra-fast sensitization for dye-sensitized solar cells |
| spellingShingle |
In situ monitoring and optimization of room temperature ultra-fast sensitization for dye-sensitized solar cells Matthew Davies Trystan Watson Peter Holliman David Worsley |
| title_short |
In situ monitoring and optimization of room temperature ultra-fast sensitization for dye-sensitized solar cells |
| title_full |
In situ monitoring and optimization of room temperature ultra-fast sensitization for dye-sensitized solar cells |
| title_fullStr |
In situ monitoring and optimization of room temperature ultra-fast sensitization for dye-sensitized solar cells |
| title_full_unstemmed |
In situ monitoring and optimization of room temperature ultra-fast sensitization for dye-sensitized solar cells |
| title_sort |
In situ monitoring and optimization of room temperature ultra-fast sensitization for dye-sensitized solar cells |
| author_id_str_mv |
4ad478e342120ca3434657eb13527636 a210327b52472cfe8df9b8108d661457 c8f52394d776279c9c690dc26066ddf9 c426b1c1b0123d7057c1b969083cea69 |
| author_id_fullname_str_mv |
4ad478e342120ca3434657eb13527636_***_Matthew Davies a210327b52472cfe8df9b8108d661457_***_Trystan Watson c8f52394d776279c9c690dc26066ddf9_***_Peter Holliman c426b1c1b0123d7057c1b969083cea69_***_David Worsley |
| author |
Matthew Davies Trystan Watson Peter Holliman David Worsley |
| author2 |
Matthew Davies Trystan Watson Peter Holliman Arthur Connell David Worsley |
| format |
Journal article |
| container_title |
Chem. Commun. |
| container_volume |
50 |
| container_issue |
83 |
| container_start_page |
12512 |
| publishDate |
2014 |
| institution |
Swansea University |
| issn |
1359-7345 |
| doi_str_mv |
10.1039/C4CC05766J |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
| document_store_str |
0 |
| active_str |
0 |
| description |
We describe the fastest dyeing of TiO2 photo-electrodes for dye-sensitized solar cells reported to date (<2 min) at room temperature giving η = 7.5% for an N719–SQ1–CDCA mixture which is significantly higher than devices dyed for >12 h using the same dye mixture (η = 5.5%). Time-lapse photography has been used to monitor the ultra-fast co-sensitization. The data show significantly different dye uptake between passive and pump dyeing reflecting competitive sorption between a Ru complex (N719) and an organic dye (SQ1). |
| published_date |
2014-10-25T03:35:24Z |
| _version_ |
1851090769399513088 |
| score |
11.089386 |

