No Cover Image

Journal article 1144 views 67 downloads

An enhanced Immersed Structural Potential Method for fluid–structure interaction

Antonio Gil Orcid Logo, Aurelio Arranz Carreno Orcid Logo, Javier Bonet Orcid Logo, O. Hassan, Oubay Hassan Orcid Logo

Journal of Computational Physics, Volume: 250, Issue: 1, Pages: 178 - 205

Swansea University Authors: Antonio Gil Orcid Logo, Aurelio Arranz Carreno Orcid Logo, Javier Bonet Orcid Logo, Oubay Hassan Orcid Logo

  • 15183.pdf

    PDF | Version of Record

    Copyright 2013 Elsevier. Released under the terms of a CC-BY license

    Download (5.8MB)

Abstract

Within the group of immersed boundary methods employed for the numerical simulation of fluid–structure interaction problems, the Immersed Structural Potential Method (ISPM) was recently introduced (Gil et al., 2010) [1] in order to overcome some of the shortcomings of existing immersed methodologies...

Full description

Published in: Journal of Computational Physics
ISSN: 0021-9991
Published: Elsevier BV 2013
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa15183
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2013-07-23T12:13:58Z
last_indexed 2023-01-11T13:45:06Z
id cronfa15183
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-12-05T11:45:21.1646515</datestamp><bib-version>v2</bib-version><id>15183</id><entry>2013-07-10</entry><title>An enhanced Immersed Structural Potential Method for fluid&#x2013;structure interaction</title><swanseaauthors><author><sid>1f5666865d1c6de9469f8b7d0d6d30e2</sid><ORCID>0000-0001-7753-1414</ORCID><firstname>Antonio</firstname><surname>Gil</surname><name>Antonio Gil</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>43be2885a580f00294b85f3160d4a7b9</sid><ORCID>0000-0001-9582-1933</ORCID><firstname>Aurelio</firstname><surname>Arranz Carreno</surname><name>Aurelio Arranz Carreno</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b7398206d59a9dd2f8d07a552cfd351a</sid><ORCID>0000-0002-0430-5181</ORCID><firstname>Javier</firstname><surname>Bonet</surname><name>Javier Bonet</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>07479d73eba3773d8904cbfbacc57c5b</sid><ORCID>0000-0001-7472-3218</ORCID><firstname>Oubay</firstname><surname>Hassan</surname><name>Oubay Hassan</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2013-07-10</date><deptcode>CIVL</deptcode><abstract>Within the group of immersed boundary methods employed for the numerical simulation of fluid&#x2013;structure interaction problems, the Immersed Structural Potential Method (ISPM) was recently introduced (Gil et al., 2010) [1] in order to overcome some of the shortcomings of existing immersed methodologies. In the ISPM, an incompressible immersed solid is modelled as a deviatoric strain energy functional whose spatial gradient defines a fluid&#x2013;structure interaction force field in the Navier&#x2013;Stokes equations used to resolve the underlying incompressible Newtonian viscous fluid. In this paper, two enhancements of the methodology are presented. First, the introduction of a new family of spline-based kernel functions for the transfer of information between both physics. In contrast to classical IBM kernels, these new kernels are shown not to introduce spurious oscillations in the solution. Second, the use of tensorised Gaussian quadrature rules that allow for accurate and efficient numerical integration of the immersed structural potential. A series of numerical examples will be presented in order to demonstrate the capabilities of the enhanced methodology and to draw some key comparisons against other existing immersed methodologies in terms of accuracy, preservation of the incompressibility constraint and computational speed.</abstract><type>Journal Article</type><journal>Journal of Computational Physics</journal><volume>250</volume><journalNumber>1</journalNumber><paginationStart>178</paginationStart><paginationEnd>205</paginationEnd><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0021-9991</issnPrint><issnElectronic/><keywords/><publishedDay>1</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2013</publishedYear><publishedDate>2013-10-01</publishedDate><doi>10.1016/j.jcp.2013.05.011</doi><url/><notes/><college>COLLEGE NANME</college><department>Civil Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CIVL</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-12-05T11:45:21.1646515</lastEdited><Created>2013-07-10T15:03:51.7705655</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Antonio</firstname><surname>Gil</surname><orcid>0000-0001-7753-1414</orcid><order>1</order></author><author><firstname>Aurelio</firstname><surname>Arranz Carreno</surname><orcid>0000-0001-9582-1933</orcid><order>2</order></author><author><firstname>Javier</firstname><surname>Bonet</surname><orcid>0000-0002-0430-5181</orcid><order>3</order></author><author><firstname>O.</firstname><surname>Hassan</surname><order>4</order></author><author><firstname>Oubay</firstname><surname>Hassan</surname><orcid>0000-0001-7472-3218</orcid><order>5</order></author></authors><documents><document><filename>15183__26017__f4b37615da054a8e8162bb3361940588.pdf</filename><originalFilename>15183.pdf</originalFilename><uploaded>2022-12-05T11:43:17.5857785</uploaded><type>Output</type><contentLength>6078472</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Copyright 2013 Elsevier. Released under the terms of a CC-BY license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/3.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-12-05T11:45:21.1646515 v2 15183 2013-07-10 An enhanced Immersed Structural Potential Method for fluid–structure interaction 1f5666865d1c6de9469f8b7d0d6d30e2 0000-0001-7753-1414 Antonio Gil Antonio Gil true false 43be2885a580f00294b85f3160d4a7b9 0000-0001-9582-1933 Aurelio Arranz Carreno Aurelio Arranz Carreno true false b7398206d59a9dd2f8d07a552cfd351a 0000-0002-0430-5181 Javier Bonet Javier Bonet true false 07479d73eba3773d8904cbfbacc57c5b 0000-0001-7472-3218 Oubay Hassan Oubay Hassan true false 2013-07-10 CIVL Within the group of immersed boundary methods employed for the numerical simulation of fluid–structure interaction problems, the Immersed Structural Potential Method (ISPM) was recently introduced (Gil et al., 2010) [1] in order to overcome some of the shortcomings of existing immersed methodologies. In the ISPM, an incompressible immersed solid is modelled as a deviatoric strain energy functional whose spatial gradient defines a fluid–structure interaction force field in the Navier–Stokes equations used to resolve the underlying incompressible Newtonian viscous fluid. In this paper, two enhancements of the methodology are presented. First, the introduction of a new family of spline-based kernel functions for the transfer of information between both physics. In contrast to classical IBM kernels, these new kernels are shown not to introduce spurious oscillations in the solution. Second, the use of tensorised Gaussian quadrature rules that allow for accurate and efficient numerical integration of the immersed structural potential. A series of numerical examples will be presented in order to demonstrate the capabilities of the enhanced methodology and to draw some key comparisons against other existing immersed methodologies in terms of accuracy, preservation of the incompressibility constraint and computational speed. Journal Article Journal of Computational Physics 250 1 178 205 Elsevier BV 0021-9991 1 10 2013 2013-10-01 10.1016/j.jcp.2013.05.011 COLLEGE NANME Civil Engineering COLLEGE CODE CIVL Swansea University 2022-12-05T11:45:21.1646515 2013-07-10T15:03:51.7705655 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Antonio Gil 0000-0001-7753-1414 1 Aurelio Arranz Carreno 0000-0001-9582-1933 2 Javier Bonet 0000-0002-0430-5181 3 O. Hassan 4 Oubay Hassan 0000-0001-7472-3218 5 15183__26017__f4b37615da054a8e8162bb3361940588.pdf 15183.pdf 2022-12-05T11:43:17.5857785 Output 6078472 application/pdf Version of Record true Copyright 2013 Elsevier. Released under the terms of a CC-BY license true eng http://creativecommons.org/licenses/by/3.0/
title An enhanced Immersed Structural Potential Method for fluid–structure interaction
spellingShingle An enhanced Immersed Structural Potential Method for fluid–structure interaction
Antonio Gil
Aurelio Arranz Carreno
Javier Bonet
Oubay Hassan
title_short An enhanced Immersed Structural Potential Method for fluid–structure interaction
title_full An enhanced Immersed Structural Potential Method for fluid–structure interaction
title_fullStr An enhanced Immersed Structural Potential Method for fluid–structure interaction
title_full_unstemmed An enhanced Immersed Structural Potential Method for fluid–structure interaction
title_sort An enhanced Immersed Structural Potential Method for fluid–structure interaction
author_id_str_mv 1f5666865d1c6de9469f8b7d0d6d30e2
43be2885a580f00294b85f3160d4a7b9
b7398206d59a9dd2f8d07a552cfd351a
07479d73eba3773d8904cbfbacc57c5b
author_id_fullname_str_mv 1f5666865d1c6de9469f8b7d0d6d30e2_***_Antonio Gil
43be2885a580f00294b85f3160d4a7b9_***_Aurelio Arranz Carreno
b7398206d59a9dd2f8d07a552cfd351a_***_Javier Bonet
07479d73eba3773d8904cbfbacc57c5b_***_Oubay Hassan
author Antonio Gil
Aurelio Arranz Carreno
Javier Bonet
Oubay Hassan
author2 Antonio Gil
Aurelio Arranz Carreno
Javier Bonet
O. Hassan
Oubay Hassan
format Journal article
container_title Journal of Computational Physics
container_volume 250
container_issue 1
container_start_page 178
publishDate 2013
institution Swansea University
issn 0021-9991
doi_str_mv 10.1016/j.jcp.2013.05.011
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description Within the group of immersed boundary methods employed for the numerical simulation of fluid–structure interaction problems, the Immersed Structural Potential Method (ISPM) was recently introduced (Gil et al., 2010) [1] in order to overcome some of the shortcomings of existing immersed methodologies. In the ISPM, an incompressible immersed solid is modelled as a deviatoric strain energy functional whose spatial gradient defines a fluid–structure interaction force field in the Navier–Stokes equations used to resolve the underlying incompressible Newtonian viscous fluid. In this paper, two enhancements of the methodology are presented. First, the introduction of a new family of spline-based kernel functions for the transfer of information between both physics. In contrast to classical IBM kernels, these new kernels are shown not to introduce spurious oscillations in the solution. Second, the use of tensorised Gaussian quadrature rules that allow for accurate and efficient numerical integration of the immersed structural potential. A series of numerical examples will be presented in order to demonstrate the capabilities of the enhanced methodology and to draw some key comparisons against other existing immersed methodologies in terms of accuracy, preservation of the incompressibility constraint and computational speed.
published_date 2013-10-01T03:17:18Z
_version_ 1763750380551798784
score 11.037603