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Within the group of immersed boundary methods employed for the numerical simulation
of fluid–structure interaction problems, the Immersed Structural Potential Method (ISPM)
was recently introduced (Gil et al., 2010) [1] in order to overcome some of the shortcom-
ings of existing immersed methodologies. In the ISPM, an incompressible immersed solid is
modelled as a deviatoric strain energy functional whose spatial gradient defines a fluid–
structure interaction force field in the Navier–Stokes equations used to resolve the under-
lying incompressible Newtonian viscous fluid. In this paper, two enhancements of the
methodology are presented. First, the introduction of a new family of spline-based kernel
functions for the transfer of information between both physics. In contrast to classical IBM
kernels, these new kernels are shown not to introduce spurious oscillations in the solution.
Second, the use of tensorised Gaussian quadrature rules that allow for accurate and effi-
cient numerical integration of the immersed structural potential. A series of numerical
examples will be presented in order to demonstrate the capabilities of the enhanced meth-
odology and to draw some key comparisons against other existing immersed methodolo-
gies in terms of accuracy, preservation of the incompressibility constraint and
computational speed.

� 2013 Elsevier Inc. Open access under CC BY license.
1. Introduction

The Immersed Boundary Method (IBM) was initially introduced by Peskin [2] with the purpose of studying flow patterns
around heart valves. In this fluid–structure interaction (FSI) method, the interaction of an immersed structure within a fluid
is modelled by means of a body force field obtained from an assemblage of simplified spring elements mimicking the behav-
iour of the continuum structure. This force field is then solved within the Navier–Stokes equations representing the under-
lying incompressible Newtonian viscous fluid.

Partitioned boundary-fitted methods are the well-established alternative to immersed methodologies. These are based on
the Arbitrary Lagrangian Eulerian approach [3–5] and require mesh updating algorithms for the movement of the referential
fluid mesh. Furthermore, in some cases, where the deformations are extreme and even topological changes emerge, the
introduction of an adaptive remeshing technique becomes necessary, leading to prohibitively expensive numerical simula-
tions, especially for three dimensional scenarios. In these cases, immersed methods become extremely competitive from the
computational point of view.
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From a methodological point of view, immersed methods can all be framed within the so-called Fictitious Domain (FD)
philosophy, introduced by Glowinski et al. in [6] for the resolution of boundary value problems in complex geometrical set-
tings. According to [7], three different FD methods can be identified in the available literature. Firstly, non-body force based
schemes [8], where the presence of an immersed solid is established by enforcing strongly that the velocity of the surround-
ing fluid matches that of the immersed structure at the interface (i.e. Dirichlet Boundary Conditions (BCs) on the fluid); in
turn, the movement of the immersed solid is obtained after the equation of motion of the solid is solved subjected to the
force field imposed by the surrounding fluid domain (i.e. Neumann BCs on the solid). Secondly, body force based Distributed
Lagrange Multiplier (DLM) methods, originally developed in [9] for the simulation of particulate flows with immersed rigid
particles and subsequently extended in [10,7] to model deformable solids. In this family of methods, the no-slip velocity con-
straint at the interface between the physics is imposed as an equation for the Lagrange multiplier defined on the solid
boundary. This Lagrange multiplier can be physically understood as a FSI body force field imposed on the background fluid.
Thirdly, body force based non-DLM methods, where the no-slip velocity constraint is imposed strongly on the solid (i.e.
Dirichlet BCs on the solid) and a FSI body force is then evaluated and applied to the surrounding fluid (i.e. Neumann BCs
on the fluid). This FSI body force is obtained from the spatial integration of the stress field which emerges as a result of
the deformation experienced by the immersed structure.

As pointed in [9], the IBM introduced by Peskin [2,11,14] and Peskin and McQueen [12,13] belongs to the class of body
force based non-DLM FD methods described above. In recent years, there has been a considerable revival of this particular
type of immersed approaches for FSI problems, in particular, for biomedical applications [15]. The methodology is no longer
restricted to modelling simplified fibre-like solids as in [16–18]. More realistic continuum-like structures can also be ana-
lysed due to enhancements introduced in the original methodology which lead to the Extended Immersed Boundary Method
(EIBM) originally presented in [19] and the Immersed Finite Element Method (IFEM) pioneered in [20]. In these approaches,
the immersed structure is modelled by means of the Finite Element Method, where standard piecewise polynomial shape
functions are used to compute the deformation gradient tensor within the immersed structure domain. The nodal displace-
ment field of the structure Finite Element mesh is computed after time integration of the nodal velocity field, which is ob-
tained after suitable interpolation of the velocity field from the background fluid domain with the help of kernel functions
defined on the fluid [19,15,21–24]. Both in the EIBM and the IFEM, the force field at the nodes of the deformable solid Finite
Element mesh is computed as a result of the spatial integration of the stress tensor through the use of the spatial gradient of
standard nodal Finite Element shape functions.

In Ref. [1], the authors introduced the Immersed Structural Potential Method (ISPM) where the immersed structure is
modelled by means of a deviatoric strain energy functional. From the spatial discretisation point of view, the structure is
modelled as a collection of integration points which deform according to the kinematics defined by the background fluid.
In this case, no auxiliary Finite Element mesh is utilised to compute the deformation of the immersed structure. On the con-
trary, the kinematics of the immersed structure is recovered by means of suitable kernel functions defined on the back-
ground fluid domain, used to compute the velocity field and the spatial gradient velocity tensor directly at an integration
point level. A structure preserving time integration scheme is then used to compute the deformation gradient tensor at every
integration point. This methodology is in line with but distinct from approaches such as the Material Point Method (MPM)
[25,26] or the force-projection method presented in [27].

After introducing the continuum immersed formulation from a variationally consistent point of view, this paper aims to
establish a comparison between the ISPM and other alternative continuum immersed methodologies, specifically the EIBM
or the IFEM [19,20,15,21,23] where the immersed structure is represented in the discrete setting by means of the Finite Ele-
ment Method. Aspects such as the influence of the interpolation methodology on the structural stresses obtained, structure
preserving features of the time–space integrators of each methodology (i.e. conservation of the incompressibility constraint)
and speed of computation of the non-linear coupled algorithm, will be discussed in order to emphasise the advantages of our
new ISPM approach.

In the Immersed Interface Method (IIM) introduced by LeVeque and Li [28], the spatial discretisation of the fluid equa-
tions are re-written to minimise the local truncation error of the discrete equations, formulated in this case by using the Fi-
nite Difference Method. The correct implementation of the normal and tangential jumps at the physics interface enables the
capturing of the sharp interface. However, this technique is not without computational difficulties, discussed in depth in
[27].

Alternative immersed methods (e.g. IBM, IFEM, ISPM, EIBM, MPM) rely upon the introduction of interpolating kernel
functions which are used to transfer information (i.e. velocities and FSI forces) between the immersed structure and the
background fluid domain. The introduction of these kernel functions leads inevitably to the smearing of the solution vari-
ables around the interface region, which some authors have addressed by introducing telescopic refinement strategies
[29]. Peskin introduced in [30,12] and revisited in [14] a methodology for the definition of suitable kernel functions to be
used in conjunction with the IBM. However, these IBM kernel functions are not necessarily optimal when used in conjunc-
tion with alternative immersed methodologies such as the ISPM, where not only the kernel functions but also their spatial
gradient must be evaluated as part of the computation of the FSI forces.

In [27], the authors employed piecewise linear finite elements to describe the kinematics of the immersed solid (i.e. for
the computation of the deformation gradient tensor). As remarked in [27], the lack of regularity of these isoparametric inter-
polants (discontinuous derivatives across element interfaces) can lead to force singularities in the computation of the FSI
forces. The direct use of this approach would result in the appearance of numerical oscillations in the unknown fields
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[22] which can lead to numerical instabilities [27] and, subsequently, lack of robustness of the overall technique. In [27], the
authors utilise a posteriori Zienkiewicz–Zhu recovery methodology in the structure domain in order to remove these spuri-
ous oscillations from the solution field.

Similar numerical oscillations to those described above also emerge in the ISPM when utilising classical IBM kernels due
to their lack of regularity (with discontinuous second derivatives). Furthermore, it is important to remark that the immersed
structure stresses are captured in the Lagrangian description and hence, in order to compute them accurately, it is important
to ensure that these spurious oscillations are not introduced via the kernel interpolation functions. In this paper, the authors
have specifically designed a new family of kernel functions which do not introduce these spurious oscillations. The kernel
functions are obtained by taking into account discrete reproducibility conditions as originally introduced by Peskin [14]
(in our case, tailor-made for Cartesian staggered grids) and regularity requirements to prevent the appearance of spurious
oscillations when computing derivatives. A Maple computer program has been developed to obtain explicit expressions
for the new kernels.

However, it is also certain that the regularity requirement when designing the kernel function comes at a price, which can
be the widening of the kernel support. The authors have experimented with alternative kernels, with different supports (e.g.
½�3=2;3=2�; ½�2;2�; ½�3;3� . . .) and regularity conditions (e.g. C2; C3; C4 . . .), and have elected to use the one showing the most
improved results in terms of absence of spurious oscillations, faster convergence of the fixed point iteration scheme and im-
proved error convergence after using high order quadrature rules whilst maintaining comparable smearing effects to those
shown by classical kernel functions.

This paper is broken down into the following sections. In Section 2, the governing equations of the problem are presented
in a variational format and the underlying incompressible fluid is discretised, taking advantage of a very efficient low order
finite volume scheme set in a Cartesian staggered mesh. Section 3 revisits the formulation of the immersed structural energy
potential. In Section 4, the methodology used to compute the immersed solid deformation gradient tensor is re-written to
highlight its qualities and allow for an easy theoretical comparison with alternative continuum immersed methodologies, as
is presented in Section 5. Section 6 briefly summarises the algorithms in the form of a flowchart for both the ISPM and an
alternative continuum immersed methodology. Section 7 starts by reviewing the construction procedure originally proposed
by Peskin [11] to define IBM kernel functions. The method is then generalised for any branch-based kernel. Subsequently, a
new family of spline-branch-based kernel polynomials is introduced, highlighting some aspects in respect to their Fourier
decomposition and their use in conjunction with new quadrature rules. Section 8 presents a range of numerical results in
order to demonstrate the aspects described in previous sections of the paper. Finally, in Section 9, some concluding remarks
will be made.

2. Governing equations

Let us consider the motion of a continuum defined by means of a mapping / established between a reference or material
configuration X 2 X0 � R2 and a spatial or current configuration x 2 X � R2 at time t, namely xðtÞ ¼ /ðX; tÞ. The deformation
gradient tensor F is defined as the material gradient of the spatial position as,
F ¼ r0x ¼ @x
@X

; J ¼ det F ð1Þ
where J is the Jacobian of the transformation. In addition, the velocity u ¼ ½u;v �T of the continuum is computed as uðX; tÞ ¼ @x
@t.

The conservation of linear momentum for an arbitrary spatial volume X is expressed in integral form as,
D
Dt

Z
X
qudv ¼

Z
X

g dv þ
Z
@X

t da ð2Þ
where g denotes an external volume force field per unit of spatial volume and t ¼ rn is the traction vector associated to the
Cauchy stress tensor r and an element of area da in the boundary of the current configuration @X with outward unit normal
n. Decomposition of the stress tensor r into its volumetric �pI and deviatoric r0 components renders,
D
Dt

Z
X
qudv ¼

Z
X

g dv �
Z
@X

pndaþ
Z
@X

r0nda ð3Þ
Application of the Reynolds’ transport theorem (Lie derivative) and the consideration of a Newtonian l-viscous incompress-
ible continuum leads to,
Z

X

@

@t
ðquÞdv þ

Z
@X
ðqu� uþ pI � l$uÞ � nda ¼

Z
X

g dv ð4Þ
which represents the conservation of linear momentum for an incompressible Newtonian viscous continuum in an integral
format. Within the framework of low order Finite Volume schemes [31,32], X can be regarded as a control volume where the
above vector equation (4) can be re-interpreted according to an Eulerian variational formulation as the following weak form,
dWXð/; duÞ ¼ dWX
inerð/; duÞ þ dWX

intð/; duÞ � dWX
extð/; duÞ ¼ 0 ð5Þ
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dWX
inerð/; duÞ ¼

Z
X

du � @
@t
ðquÞdv þ

Z
@X

du � ðqu� uÞ � nda ð6Þ

dWX
intð/; duÞ ¼

Z
@X

du � ðpI � l$uÞ � nda ð7Þ

dWX
extð/; duÞ ¼

Z
X

du � g dv ð8Þ
where du ¼ ½du; dv �T is an arbitrary piecewise constant virtual velocity field with support X ¼ X
S
@X. Particularising for the

case of a Cartesian staggered mesh, let XuAx and XvAy be the control volumes associated with the Cartesian components of the
velocity uAx and vAy , respectively, with an arrangement similar to that of a Marker And Cell (MAC) grid [33] – see Fig. 1(a) and
(b). Here, Ax and Ay denote fluid cell edges perpendicular to the ox and oy Cartesian axes, respectively, and uAx and vAy their
corresponding normal edge velocities, for which the above weak form (5) can be split into,
dWX
uAx ð/; duAx Þ ¼

Z
XuAx

duAx
@

@t
ðquÞdv þ

Z
@XuAx

duAxF u � nda�
Z

XuAx

duAx g � ex dv ¼ 0 ð9Þ

dWX
vAy ð/; dvAyÞ ¼

Z
X

vAy

dvAy
@

@t
ðqvÞdv þ

Z
@X

vAy

dvAyF v � nda�
Z

X
vAy

dvAy g � ey dv ¼ 0 ð10Þ
where fex; eyg is the standard Cartesian basis. Eqs. (9) and (10) represent the conservation of linear momentum variables qu
and qv in a variational integral form with F u and F v their corresponding interface fluxes, namely,
F u ¼ quuþ pex � l$u; F v ¼ qvuþ pey � l$v ð11Þ
The convective components of the numerical fluxes, that is quu and qvu, are obtained using a stabilised convective approx-
imation, such as SMART [34], HLPA [35], VONOS [36] or QUICK [37], which minimise numerical diffusion, avoid the creation
of spurious oscillations and reduce the total variation of the solution by accounting for the transportive nature of the fluid
[38].

3. Immersed structural potential

Let us consider an incompressible deformable solid fully immersed within the surrounding incompressible viscous fluid.
Following a numerical immersed strategy [2,11,14], the solid can be modelled as a Helmholtz’s free energy density functional
Ws whose spatial gradient defines a fluid–structure interaction force field which is regarded as an external source term by the
background viscous fluid [1]. In addition, if the background fluid is incompressible and ensuring that the numerical scheme
used to solve the background fluid is divergence-free velocity preserving, only the deviatoric component of the solid stress
will need to be taken into consideration [1]. Hence, the homogeneous (distortional) component of the solid energy density
functional, namely bWs will be defined in terms of the isochoric component of the strain [39–42].

For spatial semi-discretisation purposes, the solid domain is modelled in a Lagrangian manner as a collection of integra-
tion points ap immersed within the fluid, moving from an initial position Xap to the spatial position xap at time instant t,
Fig. 1. Control volumes for staggered Cartesian velocity field u and v.
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through the deformation gradient tensor F defined by the motion of the surrounding continuum (i.e. non-slip condition). To
describe the constitutive behaviour of the structure and within the context of hyperelasticity, a potential energy functional
Ps is then introduced as,
Psð/Þ ¼
Z

Xs
0

bWsð/ÞdV ’
X

ap

bWsð/ap ÞWap ð12Þ
where bWs is the stored strain energy density functional per unit of undeformed volume Xs
0 and Wap is the material or

Lagrangian weight associated with a structure integration point ap. With the purpose of distinguishing the surrounding fluid
phase from the immersed solid phase, a superindex ð:Þs will be employed when referring to the latter.

It is important to remark that the integration points’ parameters (i.e. spatial location Xap and associated tributary weight
Wap ) do not necessarily need to be evaluated from discrete non-overlapping elements after an initial tessellation has been
carried out in the solid domain Xs

0 (in the sense of a Finite Element approach). Alternatively, Xap and Wap can be obtained
directly from the use of optimal high order Gaussian quadrature rules. Crucially, the latter approach can ensure accuracy
of quadrature of the immersed potential bWs and improve speed of computation.

The velocity of the deformable immersed solid can be obtained after suitable definition of an interpolation operator which
enables to transfer information from the background Eulerian fluid to the Lagrangian solid. Specifically, the velocity u at any
integration point ap currently at xap can be evaluated as follows,
uap ¼ ½uap ; vap �T; uap ¼ IðuÞðxap Þ ¼
X

Ax

uAxuAx ðxap Þ;
X

Ay

uAyuAy ðxap Þ

24 35T

ð13Þ
where
uAx ðxÞ ¼ uðx� xAx Þ; uAyðxÞ ¼ uðx� xAy Þ ð14Þ
are centred at fluid cell edges Ax and Ay, defined by the spatial position xAx and xAy , mid-points of their respective fluid cell
edges. For a Cartesian Eulerian mesh, it is convenient to formulate these interpolating functions by means of a tensor product
expansion as follows,
uðxÞ ¼ 1
DxDy

/
x
Dx

� �
/

y
Dy

� �
; x ¼ ½x; y�T ð15Þ
where / is a one dimensional kernel function [14,43]. Similarly, a virtual velocity field vector dus ¼ ½dus; dvs�T evaluated at a
structure integration point ap can also be described as,
duap ¼ ½duap ; dvap �T; duap ¼ IðduÞðxap Þ ¼
X

Ax

duAxuAx ðxap Þ;
X

Ay

duAyuAy ðxap Þ

24 35T

ð16Þ
where a consistent interpolating methodology is employed as in Eq. (13), to ensure conservation of the overall scheme. The
internal virtual work formulated in the case of the immersed solid domain is defined as the directional derivative of the
Helmholtz’s free energy functional with respect to a virtual velocity field vector [40,39] as follows,
dWs
intð/; dusÞ ¼

Z
Xs

0

s0s : $dus dV ’
X

ap

Waps0s;ap : $duap ð17Þ
where s0s is the Kirchhoff stress tensor. The evaluation of the above formula (17) requires the computation of the spatial gra-
dient of the virtual velocity at integration point ap, which can be easily obtained by making use of the spatial gradient of the
interpolating kernel functions defined above,
$duap ¼ $IðduÞðxap Þ ¼
X

Ax

duAx $uAx ðxap Þ;
X

Ay

dvAy$uAy ðxap Þ

24 35T

ð18Þ
After re-writing the Kirchhoff stress tensor in the form s0s ¼ ½s0sx ; s0sy �
T, Eq. (17) can be reformulated in a continuum manner as,
dWs
intð/; dusÞ ¼

Z
Xs

0

ðs0sx � $IðduÞðxsÞ þ s0sy � $IðdvÞðxsÞÞdV ð19Þ
Substitution of Eq. (18) back into (19) yields in a discrete manner,
dWs
intð/; dusÞ ¼

X
Ax

duAx f Ax
x þ

X
Ay

dvAy f Ay
y ð20Þ
where,
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f Ax
x ¼

Z
Xs

0

s0sx � $uAx ðxsÞdV ’
X

ap

Waps0s;ap
x � $uAx ðxap Þ ð21Þ

f Ay
y ¼

Z
Xs

0

s0sy � $uAy ðxsÞdV ’
X

ap

Waps0s;ap
y � $uAyðxap Þ ð22Þ
In order to guarantee conservation of the scheme, and after comparing Eqs. (9), (10) and (20), it transpires that,
gAx
x ¼

f Ax
x

jXuAx j
; gAy

y ¼
f Ay
y

jXvAy j
ð23Þ
where gAx
x and gAy

y represent the fluid–structure interaction force per unit volume which must be applied at the fluid cell
edges Ax and Ay, respectively. As can observed from equations (13), (16) and (18), both the velocity vector and the velocity
gradient tensor are sampled directly at integration points ap within the solid domain. In addition, the Kirchhoff stress tensor
is directly integrated back to the background viscous fluid (21) and (22). This methodology, similar to the Material Point
Method [25,26,44] or the force projection method presented in [27], differs from existing continuum immersed methodol-
ogies [19,15,21,27,23] where an auxiliary Finite Element mesh is used to describe the kinematics of the immersed solid do-
main with the use of standard piecewise polynomials. In the ISPM, both entities describing the kinematics of the solid,
namely velocity v and spatial velocity gradient tensor l, are evaluated directly onto the integration points by means of
the kernel functions set on the background fluid mesh, which removes the need for utilising an intermediate Finite Element
mesh to model the solid and leads to a variationally consistent scheme.

4. Evaluation of the immersed solid deformation gradient tensor F

A key ingredient for the evaluation of the stress tensor s0s (21) and (22) is the deformation gradient tensor F at any loca-
tion within the immersed continuum. In the ISPM [1], a new methodology for the evaluation of F is suggested in contrast to
alternative immersed methodologies [19,15,21,23]. First, the spatial velocity gradient tensor l must be evaluated at every
integration point ap, for which the following interpolation operator must be recalled (18):
lap ¼ $uap ¼ $IðuÞðxap Þ ¼
X

Ax

uAx$uAx ðxap Þ;
X

Ay

vAy$uAy ðxap Þ

24 35T

ð24Þ
where the spatial gradient of the kernel functions f$uAx ;$uAxg can be explicitly computed. Second, a time integration
scheme is proposed for the tensor system of kinematic differential equations:
_F ¼ lF ¼ ðdþwÞF ð25Þ
where d and w are the strain rate tensor and the vorticity tensor, respectively. An iterative explicit time integration scheme
can be employed with the purpose of obtaining F at time instant nþ 1 and iteration kþ 1 as follows,
Fnþ1
kþ1 ¼ eDtlnþ1

kþ1 Fn ð26Þ
Alternative time integration schemes based upon the Magnus’ expansion [45] or a generalised exponential map h-method
[46] could also be used. Following [1], a pseudo-polar decomposition is computed as,
eDtl ¼ eDtðdþwÞ ’ eDtweDtd ð27Þ
To compute the first factor in (27), which can be seen as an approximation to an increment in rotation DR, we use Hughes–
Winget’s update [47],
eDtw ’ DR ¼ I � 1
2

Dtw
� ��1

I þ 1
2

Dtw
� �

ð28Þ
and given the symmetry of d, and hence its normality, we use the spectral decomposition theorem for the second factor, the
increment in stretch DU,
eDtd ¼ DU ¼
X

i

ekiDtni � ni ð29Þ
where ki and ni are the eigenvalues and eigenvectors of d, respectively. It is of prime importance to ensure the incompress-
ibility of the solid to avoid numerical instability of the scheme. Two issues must finally be emphasised: first, the velocity
gradient tensor l calculated at an integration point ap followed from the interpolation procedure depicted in Eq. (24) must
be traceless and second, the time-integration algorithm used to solve the tensor system of differential equations (26) must
respect this property, namely J ¼ det F ¼ 1. Suitable projection of l in conjunction with the use of the scheme described
above [1] guarantees that J ¼ det F ¼ 1 when evaluating the immersed structure stresses. The evaluation of F from the time



184 A.J. Gil et al. / Journal of Computational Physics 250 (2013) 178–205
integration of l and not from the gradient of the spatial coordinates x enables the ISPM to be understood as a mixed method
where both x and F are unknown variables of the immersed structure problem.

In the ISPM, structure volume conservation errors will be introduced by the computation of the spatial velocity gradient
tensor l at every structure integration point when using the interpolation operator lap ¼ $uap ¼ $IðuÞðxap Þ. The use of a frac-
tional step approach in conjunction with a Fast Fourier Transform (FFT) technique in the background fluid enables the sat-
isfaction of the divergence free velocity field to machine accuracy in the fluid cell centres. A linear projection of the tensor l is
carried out to the vector space tr l ¼ 0 in order to eliminate the error brought about by the kernel interpolation.

The construction of the time integration of the deformation gradient tensor _F ¼ lF preserves the condition J ¼ det F ¼ 1.
Whilst this condition is satisfied in the ISPM, given the fact that an auxiliary solid mesh is not used in this methodology, it is
not possible to ensure that the nodes of this auxiliary solid mesh will move in a way that preserves the total volume of this
mesh, as it is proposed in Ref. [27]. However, in order to corroborate that this type of more restrictive incompressibility is
preserved, an ad hoc Delaunay mesh reconstruction based on the position of the solid integration points has been carried out
and the preservation of this ad hoc volume mesh will be shown below to be excellent.

5. Alternative immersed methodology

In alternative immersed methodologies [19,15,21,23], the deformable solid is modelled as a Finite Element Method (FEM)
mesh. This way, an interpolation-spreading strategy based upon kernel functions is established exclusively between the
background Eulerian fluid cell edges and the immersed nodes of the Finite Element solid mesh. The deformation gradient
tensor F is then obtained within the immersed continuum by using standard piecewise polynomial FEM shape functions.
Equivalent internal forces are computed at the nodes of the FEM mesh after suitable numerical quadrature of the stress ten-
sor evaluated at Gauss points. The equivalent nodal forces are then spread back to the Eulerian fluid mesh by means of kernel
functions ensuring conservation of the scheme. Specifically, the velocity field us at the nodes a of the FEM mesh at time step
nþ 1 and iteration kþ 1 is obtained after suitable interpolation from the background Eulerian grid as,
ua;nþ1
kþ1 ¼ Iðu

nþ1
kþ1Þðx

a;nþ1
k Þ ð30Þ
The spatial position of every FEM node a is usually time integrated according to the trapezium rule,
xa;nþ1
kþ1 ¼ xa;n þ Dt

2
ðua;n þ ua;nþ1

kþ1 Þ ð31Þ
Making use of the definition of the interpolation operator, the above formula (31) can be re-written as,
xa;nþ1
kþ1 ¼ xa;n þ Dt

2
½IðunÞðxa;nÞ þ Iðunþ1

kþ1Þðx
a;nþ1
k Þ� ð32Þ
Following a standard displacement based formulation, the deformation gradient tensor F is evaluated at every Gauss point gp

for every FEM element as,
Fgp ;nþ1
kþ1 ¼

X
a

xa;nþ1
kþ1 � $0Na

gp
ð33Þ
or as it is customary in a FEM formulation,
Fgp ;nþ1
kþ1 ¼

X
a

xa;nþ1
kþ1 �

X
b

$nNb
gp
� Xb

" #�1

$nNa
gp

ð34Þ
where Na are the standard FEM interpolation functions and $n symbolises the operator gradient with respect to the isopara-
metric coordinates in the parent domain. Above formulae (33) and (34) can also be viewed as an alternative integration
scheme for the tensor differential equation _F ¼ lF. Indeed, substitution of Eq. (32) into (33) renders after expansion,
Fgp ;nþ1
kþ1 ¼

X
a

xa;n � $0Na
gp
þ Dt

2

X
a

IðunÞðxa;nÞ � $0Na
gp
þ Dt

2

X
a

Iðunþ1
kþ1Þðx

a;nþ1
k Þ � $0Na

gp
ð35Þ
The above formula (35) can be re-written in terms of the spatial gradient of the velocity field l as,
Fgp ;nþ1
kþ1 ¼ Fgp ;n þ Dt

2
lgp ;nFgp ;n þ Dt

2
lgp ;nþ1
kþ1 Fgp ;nþ1

kþ1 ð36Þ
where the following relationships have been employed.
$0Na
gp
¼ FT$Na

gp
; lgp ¼

X
a

IðuÞðxaÞ � $Na
gp

ð37Þ
Finally, expression (36) can be re-written as,
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Fgp ;nþ1
kþ1 ¼ I � Dt

2
lgp ;nþ1
kþ1

� ��1

I þ Dt
2

lgp ;n
� �

Fgp ;n ð38Þ
where it can be observed that the deformation gradient tensor is advanced in time after time-integration of the spatial veloc-
ity gradient tensor. It is also worth noting that the time integration of _F ¼ lF is carried out via an explicit scheme of the form
Fnþ1

kþ1 ¼ EhFn where,
Eh ¼ I � Dt
2

lnþ1
kþ1

� ��1

I þ Dt
2

ln
� �

ð39Þ
It is easy to show that det Eh – 1, thus proving Eh is an incompressibility non-preserving time integration approximation to
the exponential eDtl. This issue is overcome by the ISPM [1] presented in the previous section or by employing correction
constraints such as that presented in [27].

Once the deformation gradient tensor F is known, a constitutive law can then be evaluated to determine the deviatoric
Kirchhoff stress tensor in order to compute the equivalent nodal forces at mesh nodes as,
f a ¼
Z

Xs
0

s0s : $Na dV �
X

gp

Jgps0s;gp : $Na
gp

ð40Þ
where Jgp is the product of the Jacobian and the weight associated with the Gauss point gp. The spreading of nodal forces
f a ¼ ½f a

x ; f
a
y �

T onto the Eulerian fluid can be carried out using operators Sx and Sy suitably defined to ensure the conservation
of the scheme,
f Ay
x ¼ Sxðf ÞðxAy Þ ¼

X
a

f a
x uaðxAy Þ ð41Þ

f Ax
y ¼ Syðf ÞðxAx Þ ¼

X
a

f a
y uaðxAx Þ ð42Þ
Formula (23) is finally needed to compute the fluid–structure force per unit volume which must be applied at the fluid cell
edges for solution of the Navier–Stokes equations.
6. Algorithmic comparison of the Immersed Structural Potential Method (ISPM) with alternative immersed
methodologies

Two flowcharts are displayed in Figs. 2 and 3 to explain the various computational steps needed in both the ISPM and by
using an alternative immersed methodology, respectively. In both algorithms, for the sake of simplicity, a fixed point itera-
tion scheme is used to guarantee full coupling between the fluid phase and the solid phase within each time step. A residual
norm is computed between the two latest available force terms at iterations k and kþ 1, whereby satisfaction of the coupling
between both phases is assessed, leading to either a new iteration kþ 2 or a new time step nþ 2.

In Fig. 3, the evaluation of the deformation gradient tensor F at every Gauss point gp requires two interpolation stages;
first, interpolation of the velocity field fuAx ;vAyg from the fluid mesh to the solid FEM nodes va and, second, computation of
Fgp by using the gradient of the FEM shape functions $0Na

gp
. Similarly, the computation of the immersed forces ff Ax

x ; f Ay
y g at

every fluid cell edge is carried out after two spatial integration steps; first, the deviatoric Kirchhoff stress tensor is integrated
at every Gauss point s0gp to obtain equivalent internal FEM nodal forces f a and, second, the forces are then spread to the fluid
cell edges.
7. Construction of an improved kernel function for the ISPM

In this section, the construction process of two of the interpolating kernel functions present in the IBM literature [30,43]
will be revisited. The analysis will motivate the discussion of their properties and will also prompt the construction of alter-
native kernels more suitable for use in conjunction with the ISPM, where the evaluation of the gradient of the kernel func-
tions is also necessary for the computation of the velocity gradient tensor l at the immersed structure integration points.

7.1. Kernel construction procedure proposed by Peskin

Since the inception of the IBM [2], it has been crucial to construct one-dimensional kernel functions /. In the original IBM,
a cosine type of kernel [2] is employed due to its low computational cost and simplicity. In [30] a new kernel is introduced,
setting out some of the key mathematical properties which are necessary for kernels to satisfy when being used with the
IBM. We will review here these properties and comment on the limitations and potentials of this method with the purpose
of extending this approach when employed in conjunction with the ISPM. The key ingredients introduced by Peskin for the
construction of this kernel are as follows [30,14],



Fig. 2. Flowchart of the Immersed Structural Potential Method.
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1. / is continuous
2. suppð/Þ ¼ ½�2;2�
3.
P

jj
k/ðr � jÞ ¼ rk; 8r 2 R; k ¼ 0;1

4.
P

j/ðr � jÞ2 ¼ C; 8r 2 R

The first property is highly desirable; however, for use with the ISPM it is necessary to impose higher regularity on the
resulting kernel in order to approximate derivative fields accurately. The second property merely requires the resulting ker-
nel to have a compact support, which is extremely useful from the computational point of view in order to reduce the band-
width of the resulting scheme. The third property is usually referred to as the discrete reproducibility conditions of zeroth
and first order, which will be denoted as R0 and R1 (i.e. Rk in general for order k discrete reproducibility), respectively. The
fourth property was introduced with the purpose of establishing an upper bound on the translation dependence of the kernel
in the original IBM, where C is a constant yet to be defined. A complete translation invariant approximation would be ideal,
however, as is shown in [30,14] this condition is incompatible with the second property mentioned above (i.e. compact
support).

The practical procedure for the determination of this kernel function / is as follows. Firstly, the problem is reduced to the
interval ½0;1�. In doing so, condition 3 above can be re-written in the following manner,
X
j

jk/jðrÞ ¼ rk; 8r 2 ½0;1�; k ¼ 0;1 ð43Þ
where the branches /j are defined as,



Fig. 3. Flowchart of alternative immersed methodology.
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/jðrÞ ¼ /ðr � jÞ; r 2 ½0;1� ð44Þ
Using condition 2 above, it is clear that only four branches remain to be determined, namely /�1, /0, /1 and /2. Our aim is to
express all branches as a function of the central branch /0 and then determine the latter in order to obtain the final solution
sought /. Unfortunately, note that condition 3 is equivalent to a system of two linear equations involving the four branches
and a polynomial of degree 1. In [30,14], this is resolved by replacing condition 3 for the case of k ¼ 0 by an even/odd repro-
ducibility condition, gaining an extra equation, as follows,
/0ðrÞ þ /2ðrÞ ¼ 1=2; /�1ðrÞ þ /1ðrÞ ¼ 1=2 ð45Þ
Thus, the resulting three equations for the four unknown branches are,
/0ðrÞ þ /2ðrÞ ¼
1
2

; /�1ðrÞ þ /1ðrÞ ¼
1
2

; �/�1ðrÞ þ /1ðrÞ þ 2/2ðrÞ ¼ r ð46Þ
which enables all branches to be expressed in terms of the central branch /0 to yield,
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/�1ðrÞ ¼
3
4
� r

2
� /0ðrÞ; /1ðrÞ ¼ �

1
4
þ r

2
þ /0ðrÞ; /2ðrÞ ¼ �/0ðrÞ þ

1
2

ð47Þ
Substitution of above formulae (47) into the condition 4 above, yields a quadratic equation involving only the central branch
/0 as,
3
4
� r

2
� /0ðrÞ

� �2

þ ð/0ðrÞÞ
2 þ �1

4
þ r

2
þ /0ðrÞ

� �2

þ �/0ðrÞ þ
1
2

� �2

¼ C ð48Þ
resulting in,
/0ðrÞ ¼ �
r
4
þ 3

8
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4r2 þ 4r � 5þ 16C
p

8
ð49Þ
where the constant C remains to be determined. By using the even reproducibility condition for r ¼ 0, it yields,
/0ð0Þ þ /�2ð0Þ ¼
1
2

ð50Þ
which implies /0ð0Þ ¼ 1
2 (as /�2ð0Þ ¼ 0 by construction). Substituting this value of /0ð0Þ into expression (48) leads to a con-

stant C ¼ 3=8. Finally, a closed expression for the kernel / is reached as follows,
/ðrÞ ¼

0 r 6 �2
r
4þ 5

8�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4r2�12r�7
p

8 �2 < r 6 �1

3
8þ r

4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4r2�4rþ1
p

8 �1 < r 6 0

� r
4þ 3

8þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4r2þ4rþ1
p

8 0 < r 6 1

5
8� r

4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4r2þ12r�7
p

8 1 < r 6 2
0 r > 2

8>>>>>>>>>>><>>>>>>>>>>>:
ð51Þ
As pointed out in [14], this kernel used by Peskin (51) can be very well represented by the original cosine type kernel func-
tion [2,14]. Nonetheless, the latter does not satisfy the discrete reproducibility condition of first order (i.e. condition 3 above
for k ¼ 1) and will not be considered hereafter.

7.2. Generalisation of the branch-based approach

The above approach for constructing a kernel prompts the following generalisation. The objective is to construct a kernel
function of a certain order of reproducibility m and support ½�L; L�, where L is a rational number. By introducing bxc as the
largest integer not greater than x, we can write L ¼ q

r ¼ bLc þ s
t where q; r; s; t 2 N and s 6 t and we can then explore a larger

family of branches formulated as follows,
/k
j ðrÞ ¼ /ðr � jÞ; r 2 k

t
;
kþ 1

t

� �
; k ¼ 0; . . . ; t � 1 ð52Þ
where each branch is defined in t possible subintervals of ½0;1�. For example, for the other classical IBM kernel function, the
so-called Roma–Peskin kernel [43], the following parameters were employed t ¼ 2, L ¼ 3

2 ¼ 1þ 1
2 (s ¼ 1, t ¼ 2). For discrete

reproducibility t systems of mþ 1 equations can be considered as,
X
j

jn/k
j ðrÞ ¼ rn; n ¼ 0; . . . ;m; k ¼ 0; . . . ; t � 1 ð53Þ
For system k, we restrict ourselves to the branches satisfying k
t ;

kþ1
t

	 

� ½0;1�. As the support of /k

j ðrÞ ¼ /ðr � jÞ is ½�Lþ j; Lþ j�,
only the branches j such that ½�Lþ j; Lþ j�

T k
t ;

kþ1
t

� �
– ; need to be considered, which is equivalent to satisfying one of the

following two inequalities,
k� s
t
� bLc < j <

kþ s
t
þ bLc

kþ 1� s
t

� bLc < j <
kþ 1þ s

t
þ bLc

ð54Þ
It can be shown that the above inequalities (54) involve from 2bLc up to 2bLc þ 2 branches. The objective is to express for
each system k, all branches (i.e. unknowns) involved in that system as a linear combination of the central branch /k

0. For this
to happen the rank of the reproducibility system must be one less than the number of branches in that system. In this case,
all remaining branches will be of the form
/k
j ðrÞ ¼ a/k

0ðrÞ þ Pk
j ðrÞ ð55Þ
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where a 2 R and Pk
j is a polynomial of degree m in r. The advantage of this approach is that it allows the problem of deter-

mining the kernel to be split into two subsequent stages.
The first stage involves the solution of k linear systems for the order of reproducibility sought. Once solved, all branches

will be written in the above form as functions of the main branches /k
0. The second stage is the determination of these main

branches, subject to whatever constraints are appropriate for the problem. In the case of the two classical IBM kernels de-
rived above [30,43], the main branches /k

0 are the solutions of a quadratic equation. In general, for the branch-based ap-
proach for order of reproducibility m, the main branch would be the linear combination of a polynomial of degree m and
a square root of a polynomial of degree 2m.

A graphical representation of Peskin’s classical IBM kernel [30] is displayed in Fig. 4(a) along with its first and second
derivatives. The lack of regularity of the kernel is clearly observed (discontinuous second derivative) and similar discontinu-
ities are also observed with alternative IBM kernels, such as the Roma–Peskin kernel [43]. Non-optimal results are obtained
when these kernel functions are utilised in conjunction with continuum immersed methods (e.g. IFEM, ISPM, EIBM, MPM)
where F is evaluated at a continuum level. These effects are even more severe in the ISPM, or similar techniques such as the
MPM [25,26,44] or the force projection method presented in [27], due to the use of the gradient of the kernel functions (or
piecewise linear shape functions equivalent) to determine the structural stresses. In the ISPM, this effect is clearly observable
in stress contour plots and prevents the correct evaluation of the solid stresses. These spurious oscillations, also present in
the kinematic fields l and F emerge from the artificial lack of regularity introduced by the use of the standard IBM kernels
(see Fig. 5).

It is worth noting that if more sophisticated formulations are considered involving the modelling of an immersed mem-
brane-shell solid domain where the evaluation of a curvature tensor is required, up to second derivatives of the kernel func-
tion might be required for the accurate capture of the kinematics of the solid.

7.3. Spline-branch-based new kernel

In this section, a new spline-based kernel, tailor-made to be used in conjunction with the ISPM, is introduced. Following
the branch-based approach outlined in the previous section, an appropriate general polynomial will be utilised for each of
the selected branches. Crucially, this will remove the spurious oscillations present in the structure stress field in comparison
with existing IBM kernels available in the literature. It will also be shown later in Section 8.3 that the use of this new kernel
will allow for the use of high-order quadrature rules to integrate the energy potential, which will lead to faster convergence
in the computation of FSI forces.

This new spline-based kernel function which satisfies first order reproducibility conditions and yields excellent results
was derived considering a wider support of ½�3;3�. While this consideration increases the computational cost associated
with the evaluation of the kernel, particularly for three dimensional problems, it is not necessarily the case in terms of
the overall computation time, as this depends on the number of iterations required for the convergence of the fixed point
iteration algorithm. In the authors’ experience, this number of iterations has been always lower for the kernels introduced
in this section than when using the standard IBM kernels presented above. In this case, seventh degree polynomial branches
will be employed. As before, the equations required for discrete reproducibility of first order must be fulfilled, namely,
Fig. 4.
second
�2/�2ðrÞ � /�1ðrÞ þ /1ðrÞ þ 2/2ðrÞ þ 3/3ðrÞ ¼ r ð56aÞ

/�2ðrÞ þ /�1ðrÞ þ /0ðrÞ þ /1ðrÞ þ /2ðrÞ þ /3ðrÞ ¼ 1 ð56bÞ
(a) Peskin’s (C1) kernel, support ½�2;2� and (b) proposed new C5 kernel with first order of discrete reproducibility, support ½�3;3�. Note the jumps in
derivative for Peskin’s kernel.



Fig. 5. Alternative IBM and spline-based kernels.
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These are two equations involving six unknowns, leading to four indeterminate branches /0, /1, /2 and /3, while the remain-
ing two can be expressed as follows,
/�2ðrÞ ¼ �r þ 2/1ðrÞ þ 3/2ðrÞ þ 4/3ðrÞ þ /0ðrÞ � 1 ð57aÞ

/�1ðrÞ ¼ r � 3/1ðrÞ � 4/2ðrÞ � 5/3ðrÞ � 2/0ðrÞ þ 2 ð57bÞ
Thus, the expression for a general kernel of support ½�3;3� will be of the form,
0 r 6 �3
/3ðr þ 3Þ �3 < r 6 �2
/2ðr þ 2Þ �2 < r 6 �1
/1ðr þ 1Þ �1 < r 6 0
/0ðrÞ 0 < r 6 1
r þ 1� 3/1ðr � 1Þ � 4/2ðr � 1Þ � 5/3ðr � 1Þ � 2/0ðr � 1Þ 1 < r 6 2
�r þ 1þ 2/1ðr � 2Þ þ 3/2ðr � 2Þ þ 4/3ðr � 2Þ þ /0ðr � 2Þ 2 < r 6 3
0 3 < r

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð58Þ
Substituting each of the unknown branches by a general polynomial of degree seven and imposing C6 regularity at r ¼ 0, ±1
and C5 regularity at r ¼ �2, ±3 we arrive at the following unique kernel,
0 r 6 �3
� 29

7560 r7 � 5
72 r6 � 21

40 r5 � 17
8 r4 � 39

8 r3 � 243
40 r2 � 27

8 r � 81
280 �3 < r 6 �2

17
1512 r7 þ 1

8 r6 þ 13
24 r5 þ 79

72 r4 þ 65
72 r3 þ 7

120 r2 þ 13
72 r þ 1447

2520 �2 < r 6 �1
� 11

756 r7 � 1
18 r6 þ 7

36 r4 � 29
60 r2 þ 691

1260 �1 < r 6 0
11

756 r7 � 1
18 r6 þ 7

36 r4 � 29
60 r2 þ 691

1260 0 < r 6 1
� 17

1512 r7 þ 1
8 r6 � 13

24 r5 þ 79
72 r4 � 65

72 r3 þ 7
120 r2 � 13

72 r þ 1447
2520 1 < r 6 2

29
7560 r7 � 5

72 r6 þ 21
40 r5 � 17

8 r4 þ 39
8 r3 � 243

40 r2 þ 27
8 r � 81

280 2 < r 6 3
0 3 < r

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð59Þ
Fig. 4(b) displays the graph of this new proposed kernel along with its first and second derivatives. As it can be observed, the
new kernel remains an even function without negative tails and it shows higher regularity than that of Peskin’s kernel [30].

The spline-branch-based approach was extensively used in conjunction with the symbolic algebraic computer package
Maple [48] leading to the definition of an entire family of new kernel functions with desirable regularity properties, yet sat-
isfying discrete reproducibility conditions. For the numerical examples presented in this paper, the kernel formulated above
(59) was preferred due to its accuracy whilst still remaining computationally efficient.

The new spline-based kernel functions are characterised by their support, the order of regularity (Cp) and the order of
reproducibility (R1). The spline-based kernels (with support ½�2;2�, ½�3;3� and ½�4;4�) have a much faster decaying Fourier
transform than the non-spline-based kernel functions, which translates to quicker dampening of spurious high frequency
modes present in the solution. This is particularly relevant when trying to approximate derivatives using these kernels. With
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Peskin’s [30] and Roma–Peskin’s [43] kernels, as the high frequencies still carry an important component, very high oscilla-
tions appear in the approximation of magnitudes such as the spatial velocity gradient tensor l and, hence, in the structure
stress field. In general, if a function f ðxÞ and its derivatives up to the (k� 1)-th order are continuous and dkf ðxÞ=dxk is piece-
wise continuous, then the Fourier coefficients cn decrease as 1=nk, so that limn!1nkcn ¼ 0 [49].

Widening of the support whilst respecting the regularity assumption (i.e. support ½�4;4�, p ¼ 7, C5), results in a more
favourable spectrum. However, the computational cost associated with the evaluation of the kernel starts to become prohib-
itive, especially in three dimensional applications. Analogously, increase in the regularity order of the interpolating polyno-
mial while maintaining the same support might be thought of as desirable; for instance, achieving C6 regularity with support
½�3;3� requires order p ¼ 8. However, the corresponding kernel has a slightly less favourable spectrum for very high
frequencies.

Table 1 displays a summary of the most relevant kernel functions described in this section. After extensive numerical
experimentation, the best performing kernel for the ISPM (i.e. removing spurious oscillations in the structure stress field)
was found to be the one with support ½�3;3�, p ¼ 7 and first order of reproducibility, which will be used in subsequent
numerical examples. The procedure presented for the construction of spline-based kernels shares some common elements
with B-splines [50,51], but the key difference between the two approaches is the satisfaction of the discrete reproducibility
conditions, that B-splines do not meet.

To conclude this section, a final remark on numerical quadrature is vital, especially in connection with the new spline-
based kernel functions defined above. A key aspect of the success of immersed methodologies is the accurate description
of the immersed structural domain. In the case of the ISPM, this relies upon the accurate spatial integration of the immersed
structural potential and, crucial to this is the quadrature rule employed as well as the number of integration points used. In
the original IBM or in alternative immersed methodologies constructed on the basis of the Finite Element Method
[19,15,21,23], a sufficiently high degree of discretisation of the immersed structure mesh is vital to ensure the accurate com-
putation of interaction between the physics of the problem. Existing references [14,20] propose a heuristic criterion of two
discrete structural elements per each underlying discrete fluid element.

In the original introduction of the ISPM [1], a simple procedure was employed for the construction of a low-order quad-
rature rule for an arbitrary immersed solid domain. Given a solid domain Xs

0, a classical simplicial mesh is constructed with
any of the many existing mesh generator computer packages, and the corresponding dual mesh is considered (see Fig. 6).
Using this approach, the integration points are taken as the nodes of the original mesh, and the integration weights as
the tributary areas/volumes of the corresponding dual element to that integration point.

While the above composite prism rule is simple enough and has allowed for validation of the methodology, there exists
the possibility of using more efficient approaches, such as high order quadrature rules, that produce more accurate results
with fewer integration points. The introduction of such quadrature rules (e.g. tensorised Gaussian, high-order quadrature
rules for n-simplices, mapped quadratures, etc.) is optional, but allows for the correct integration of the immersed structural
potential in a more efficient manner. Note that if the immersed potential is not integrated accurately, regardless of the type
of quadrature rule, it cannot be guaranteed that the presence of the immersed structure will be accurately modelled by the
coupled FSI system, which might lead in turn to the so-called ‘leakage’ phenomenon reported in numerous references
[14,20,24].

For the examples presented later in this paper, two different high order quadrature rules have been adopted. In the case of
a solid rectangular domain, a composite Gauss quadrature rule is adopted, of degrees ½a; b� and subintervals ½m;n�, which is
defined by tensorising composite rules of degree a (uniform) with m subintervals in the x-direction and degree b with n sub-
intervals in the y-direction (see Fig. 7(a)). In the case of a solid circular domain, a composite Gauss–Legendre quadrature rule
is adopted, of degrees ½a; b� and subintervals ½m;n�, this time defined with respect to a polar coordinates’ parametrisation
ðr; hÞ (see Fig. 7(b)).

For more general geometries where a FE mesh is available, it is also possible to consider high-order quadrature rules, as
they would be normally used in the context of high-order FEMs [52] (see Fig. 7(c)). It is important to note that the ISPM only
needs the position of the integration points and their weights, not the connectivities of the original elements that were used
to define them.
Table 1
List of relevant spline-based (SB) and non-spline-based kernel functions. Degree denotes the maximum degree (if applicable) of the polynomial branches that
define each kernel. Reproducibility of order k is understood at a discrete level and denoted as Rk .

Kernel name/reference Code-name Degree Regularity Reproducibility Support

Peskin cosine [2] k1 – C1 R0, quasi R1 ½�2;2�
Peskin [14] k2 – C1 R1 ½�2;2�
Peskin–Roma [43] k3 – C1 R1 ½�3=2;3=2�
SB kernel (p ¼ 5, C2, ½�2;2�) k11 5 C2 R1 ½�2;2�
SB kernel (p ¼ 7, C5, ½�3;3�) k15 7 C5 R1 ½�3;3�
SB kernel (p ¼ 8, C6, ½�3;3�) k16 8 C6 R1 ½�3;3�



Fig. 6. Construction of dual mesh and assignment of integration point position and weight. Left: classical FEM unstructured triangular mesh. Right:
corresponding dual mesh (in dashed line) and associated dual element of the integration point.

Fig. 7. (a) Composite tensorised Gaussian quadrature for a rectangle; (b) mapped (polar) Gauss–Legendre/Gauss–Lobatto quadrature for a circle; and (c)
high-order (degree 7 in the case shown) quadrature rule obtained from a FE mesh.
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8. Numerical results

In this section, a variety of numerical examples will be presented in order to illustrate the performance of the proposed
methodology. The ISPM will be compared against alternative immersed methodologies in terms of accuracy and numerical
efficiency. In addition, a comparison analysis will be drawn between classical IBM non-spline-based and the proposed
spline-based kernel functions when used in conjunction with the ISPM.
8.1. Contact of a flapping leaflet in pulsatile flow

This numerical example is introduced to demonstrate that the methodology performs very well against other methods
presented in the literature [53,54] within the context of biomedical applications. This problem consists of a rectangular do-
main filled with a Newtonian incompressible viscous fluid of properties (q ¼ 103 kg/m3, l ¼ 4 � 10�3 Pa s) and a thin rectan-
gular incompressible neo-Hookean membrane, attached to the top wall, with density qs ¼ 103 kg/m3 and shear modulus
ls ¼ 1:2 � 106 Pa). Fig. 8 displays a geometrical representation of the problem.

For the top and bottom boundaries of the fluid domain, non-slip and symmetry boundary conditions are imposed, respec-
tively. On the left boundary, a Poiseuille (half) profile inflow with pulsatile amplitude of the form (u ¼ a sinð2pt=TÞ, a ¼ 0:2,
T ¼ 1) is considered, whereas on the right boundary, an outflow condition is imposed. This choice of boundary conditions
pretends to simulate the closure and total inversion of a two dimensional mitral valve with no chordae tendinae under sinu-
soidal pulsatile flow. The numerical simulation is carried out by making use of classical IBM and the new spline-based kernel
functions (see Table 1) and the discretisation parameters shown in Table 2. The quadrature rule used for the ISPM is con-
structed from the dual mesh of the FE mesh defined in the Table. Comparisons drawn with the EIBM are performed using
the same meshes.



Fig. 8. Geometry for model problem 8.1.

Table 2
Discretisation parameters for problem 8.1. Nodes and elements relate to the FE mesh used to define the solid phase. For the ISPM this mesh will be used to
construct a dual-mesh quadrature rule (see Section 7.3). The EIBM can use the mesh as it is. Nodal density is defined as the average number of (solid) nodes per
fluid cell.

Run ðnx;nyÞ Nodes Elements Dt Nodal density

1 (128,32) 243 320 1:875 � 10�5 12.5

2 (256,64) 1206 2000 4:6875 � 10�6 15.5

3 (512,128) 4509 8000 1:1719 � 10�6 14.5

4 (1024,256) 17,017 32,000 2:9297 � 10�7 13.6
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As can be seen in Fig. 9, during the first half of the sinus cycle, the fluid flows from left to right. This forces the leaflet to
move towards the right (see t ¼ 0 s, t ¼ 0:0825 s), eventually closing the channel (at around t ¼ 0:1 s). During a very short
time interval, the valve is closed and the leaflet slides along the symmetry wall until it opens (t ¼ 0:15 s). Due to the elastic
energy stored in the deformed leaflet, this sliding motion is not smooth (i.e. snap-through response), and the leaflet pushes
against the wall, vibrates and allows some fluid to slip through the gap. Past t ¼ 0:15 s the leaflet fully opens, until t ¼ 0:25 s,
the time when the flow slows down and it partially goes back towards the left. During the second half of the cycle, an anal-
ogous behaviour can be observed, with closure, vibration and fully opened valve in reverse. In terms of the fluid dynamics of
the problem (Fig. 9), no differences were observed when the analysis was carried using classical IBM kernels or the alterna-
tive EIBM.

Let us now focus on the structural membrane for the solution obtained with the finest fluid and solid discretisations (la-
belled run 4 in Table 2) for t ¼ 0:14 s. At this stage, the membrane is fully open and highly deformed. The objective is to show
the removal of spurious oscillations in solid stresses when the ISPM is used. In Figs. 10(a) and 11(a), a closeup of the principal
direction associated with the maximum (signed) principal stress is displayed when using the ISPM. A smooth distribution of
this vector field is achieved by means of the ISPM (specially, when used in conjunction with the new kernel ‘k15’). Note that
for the particular section of the membrane shown, the left part is under tension (positive normal stress) whereas the right
part is under compression (negative normal stress). This explains the sudden change of orientation of ninety degrees ob-
served in the vector plot.

The corresponding vector field obtained with the EIBM (see Figs. 10(b) and 11(b)) shows a significantly different behav-
iour. For the particular snapshot shown, the vector fields displays spurious oscillations, regardless of the kernel function uti-
lised. This is clearly an undesirable unrealistic feature which prevents the capture of the smooth transition between the
sections in tension and compression of the membrane.

In Fig. 12, the proposed enhancement of the ISPM (using kernel ‘k15’) is compared to both the EIBM using Peskin’s kernel
and the original ISPM using Peskin’s kernel. Two different kinematic entities are chosen for the sake of comparison, namely
the components F12 and F22 of the deformation gradient tensor. A series of mesh refinements are shown to illustrate conver-
gence of all three methodologies to a common solution (only mesh refinement cases for ISPM/k15 and EIBM/k2 are included
to avoid cluttering the figure). While for component F12 there are no substantial differences among methodologies, both the
ISPM and EIBM show spurious high frequency modes when using Peskin’s kernel in F22. As it can be observed in the figure,
the new spline-based kernel ‘k15’ captures the solution, while minimising the appearance of these spurious modes. Results
obtained with EIBM and the new kernel ‘k15’ have not been included in the figure to also avoid cluttering the exposition. As
it will be shown in Fig. 15 in Section 8.2, the spurious oscillations that appear in the EIBM cannot be removed by using the
new kernel. Therefore the authors do not recommend using the new kernel ‘k15’ with the EIBM, as it will only increase the
computational cost and not improve the quality of the solution.

8.2. The deformation of an elastic wall by flow

The purpose of this section is to validate solutions obtained with the ISPM in combination with the new kernel ‘k15’ and
highlight its improved properties in terms of (i) capture of solid shear stresses when compared to alternative immersed
methodologies and (ii) computational efficiency when used in conjunction with high order quadrature rules. The benchmark



Fig. 9. Streamlines and evolution over time for model problem 8.1 using the new spline-based kernel ‘k15’.
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problem selected has been already analysed in the literature [27]. The computational domain is the unit square ½0;1� 	 ½0;1�,
where the upper half is assumed to be fluid of density q ¼ 1 and viscosity lf ¼ 10�2, whereas the bottom half is an elastic
incompressible neo-Hookean solid with shear modulus G ¼ 0:25. The solid is attached to the bottom of the domain, and the
top wall of the fluid has a periodic velocity profile given by
u ¼ 0; v ¼ ðcosð2ptÞ � 1Þ sinð2pxÞ ð60Þ
Periodic boundary conditions are specified at left and right boundaries. The fluid is discretised using a Cartesian staggered
grid with 256	 256 cells. In all cases presented below Dt ¼ 1:5895 � 10�4. The discretisation parameters of the elastic wall as
well the various quadrature rules employed are covered in Table 3.

In Fig. 13 the velocity field and deformation at t ¼ 1:0 s can be observed, which matches solutions present in the literature
[27]. Fig. 14 shows that the pressure along the vertical line x ¼ 0:25 at time t ¼ 0:75 agrees well for a combination of im-
mersed methodologies. More importantly, in the same figure, it can also be observed that the spline-based kernel ‘k15’ does
not introduce any significant additional smoothing of the pressure jump near the interface, regardless of having a larger sup-
port. In Fig. 15, both rxx and rxy can be observed along the vertical cut X ¼ 0:25 at t ¼ 0:75 in the solid. As it can be observed
from the figure, consistent results are obtained for rxx for the four cases compared, but a stark difference can be observed for
rxy. Shear stresses show very high frequency oscillations for the EIBM, regardless of whether ‘k2’ or ‘k15’ are used. Notice



Fig. 10. Closeup of the principal direction for the maximum principal stress (as seen with respect to the material coordinates) for t ¼ 0:14 s for model
problem 8.1 using Peskin’s kernel ‘k2’.

Fig. 11. Closeup of the principal direction for the maximum principal stress (as seen with respect to the material coordinates) for t ¼ 0:14 s for model
problem 8.1 using the new regular kernel ‘k15’.
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that in the case of the EIBM with kernel ‘k15’, even the use of a very fine solid mesh (an approximate equivalent nodal den-
sity of 9) does not remove the spurious oscillations. For the ISPM, results obtained with Peskin’s kernel ‘k2’ show noticeable
oscillations with smaller frequency. However, the combination of the new kernel ‘k15’ with the ISPM (even for a very coarse
solid discretisation of approximate nodal density 1.5) removes all oscillations in the shear stresses while not introducing any
further smoothing or smearing of the solution.

In Fig. 16, a comparison is made in terms of computational cost for solid discretisations presented above in Table 3. The
average number of time steps executed per second (defined as the number of current time-step divided by elapsed wall time
since start of computation) is shown as a function of the physical simulation time. Note that each time step requires a (pos-
sibly) different number of fixed point iterations for convergence, depending on the complexity of the nonlinear problem and
the immersed methodology employed. This average number serves as a measure of performance. Clearly, its value at the end
of the simulation multiplied by the total number of timesteps gives the total (wall) run time.

In this Fig. 16, the EIBM and ISPM (red1 and blue lines, respectively) are compared using the same interpolating kernel ‘k2’
and solid discretisation (an approximate equivalent nodal density of 4). Similar comparisons have been reported by the authors
in [1]. The small difference between these two cases is due to the different number of fixed point iterations required for con-
vergence and the different cost in the evaluation of the FSI forces between the EIBM and ISPM. A third graph (green line) has
been included with the use of high order quadrature rules for the ISPM with ‘k15’. As it can be observed in the figure, regardless
of its wider support, this new kernel in conjunction with high order quadrature is able to substantially outperform the other
diagrams (i.e. EIBM and ISPM without the use of high order quadratures). The main driving factors for this save in computational
time are the reduced number of fixed point iterations as well as the use of optimal quadrature rules, which reduces considerably
the number of integration points required (equivalent nodal density of 1.5).
1 For interpretation of colour in Figs. 4, 5, 7, 12–16, and 18–24, the reader is referred to the web version of this article.



Fig. 12. Cuts along the leading edge of the membrane for: (a) F12 at t ¼ 0:05; (b) F22 at t ¼ 0:05 s (as seen with respect to the material coordinates) for model
problem 8.1. Thick lines represent solutions obtained with the ISPM and kernel ‘k15’ for different mesh refinements (runs 2, 3 and 4 in increasing order of
refinement). Thin lines represent corresponding solutions obtained with the EIBM and Peskin’s kernel (‘k2’). The solution obtained with the ISPM and
Peskin’s kernel and the finest mesh has also been added to allow for comparison with the original ISPM. Discretisation cases are detailed in Table 2. Note
that equal line colours correspond to the same discretisation level. Convergence and consistency among solutions can be clearly observed. From the close-
ups it can also be noted how the combination of the ISPM with the new kernel ‘k15’ removes most of the oscillations present in F, which are present in both
the EIBM and ISPM while using Peskin’s kernel.

Table 3
Discretisation parameters for the deformable elastic wall by flow problem (Section 8.2). In the table, CG stands for composite Gauss quadrature rule, and ‘deg
½a; b� sub ½m;n�’ denotes a composite rule formed by tensorising composite rules of degree a (uniform) with m subintervals in the x-direction and degree b with n
subintervals in the y-direction. By a uniform FEM mesh defined by nx , ny we understand the mesh of triangles obtained by uniform subdivision into nx intervals
in the x-direction and ny in the y-direction and further splitting of the corresponding quadrilateral into two triangles. Such meshes can be used like that for the
EIBM, but for the ISPM the corresponding quadrature rule for the dual mesh has to be computed. Note in the table that nodes are interpreted as integration
nodes for the case of the ISPM and as mesh nodes for the EIBM. Element numbers are only representative for the EIBM. In the case of the ISPM, elements are
only used in visualisation, not computation. Nodal density is defined as the average number of (solid) nodes per fluid cell.

Name Nodes Elements Quadrature rule/mesh type Nodal density

EIBM/k2 131,841 262,144 Uniform FEM mesh, nx ¼ 2	 256, ny ¼ 2	 128 4.0235
EIBM/k15 296,065 589,824 Uniform FEM mesh, nx ¼ 3	 256, ny ¼ 3	 128 9.035
ISPM/k2 131,841 262,144 Uniform dual-FEM mesh, nx ¼ 2	 256, ny ¼ 2	 128 4.023
ISPM/k15 50,176 99,234 CG, deg ½7;7�, sub ½64;8� 1.5313
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8.3. Tensorised Gaussian quadratures

To illustrate the effect that different quadrature rules in conjunction with a given kernel function have on the quality of
the numerical solution, the following two dimensional simple model problem is considered.



Fig. 13. Streamlines and elastic wall deformation for model problem 8.2 at t ¼ 1:0 s. Colours in the fluid/solid denote horizontal/vertical components of the
velocity field respectively.

Fig. 14. Elastic wall deformed by flow; pressure along x ¼ 0:25 at t ¼ 0:75 s. Left: results with the ISPM/EIBM with different kernels are indistinguishable.
Right: closeup of the pressure cut. As it can be observed, the new kernel k15 does not introduce significant smoothing of the jump in pressure near the
interface when compared to existing immersed methodologies and kernels. In the legend, ‘‘SB (p ¼ 7), C5, ð�3;3Þ’’ is the spline-based kernel ‘k15’.

Fig. 15. Elastic wall deformed by flow; stress along X ¼ 0:25 at t ¼ 0:75 s. Left: rxx (ryy shows similar smooth behaviour in this case). Right: rxy . Results
show that the new regular kernel k15 is able to capture a smooth shear stress field, in contrast to existing immersed methodologies. In the legend, ‘‘SB
(p ¼ 7), C5, ð�3;3Þ’’ is the spline-based kernel ‘k15’.
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Fig. 16. Average time steps executed per second as a function of the physical simulation time. As it can be observed, the combination of the new kernel k15
is faster than alternative methodologies. Performance changes over simulation time due to the evolving complexity of the nonlinear problem. The small
difference in cost between the ISPM and EIBM for Peskin’s kernel is due to the different number of fixed point iterations. The new kernel k15 is more
expensive per interpolation, but benefits from the use of high order quadrature rules, vastly reducing the number of integration points required to ensure
accurate results, rendering the overall scheme more computationally efficient. In the legend, ‘‘SB (p ¼ 7), C5, ½�3;3�’’ is the spline-based kernel ‘k15’, ‘gq’
stands for Gaussian quadrature and ‘nogq’ stands for standard dual-mesh quadrature rule (see Section 7.3).
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Let X ¼ ½0;0:025� 	 ½0;0:02�m2 be a rectangular domain filled with a Newtonian incompressible viscous fluid with prop-
erties (l ¼ 0:004 Pa s, q ¼ 103 kg/m3). For the top and bottom boundaries of the fluid domain, non-slip and symmetry
boundary conditions are imposed, respectively. Pulsatile Poiseuille inflow boundary conditions are imposed on the left
boundary (half profile with unit velocity at the symmetry line y ¼ 0 modulated by amplitude function
U ¼ 0:2 sinð2pðt þ 10�4ÞÞm/s) and outflow boundary conditions on the right boundary. A deformable thin membrane is at-
tached to the top wall. The membrane is modelled using a neo-Hookean material model with density qs ¼ q, and shear mod-
ulus G ¼ 1:2 GPa. Fig. 17 shows a depiction of the geometry of the problem.

In this example, the error in the evaluation of the FSI forces is computed for the following numerical test cases: (a) One
ISPM iteration (see Fig. 19), in order to study the effect of quadrature rule and kernel on the accuracy of computation of FSI
forces; (b) 50 fully converged ISPM time steps, with fixed-point iteration until convergence to a set tolerance (see Fig. 20);
and (c) 1000 fully converged ISPM time steps, in order to study longer term effects of quadrature rule and kernel, particularly
when integration nodes cross kernel definition boundaries (see Fig. 21). The purpose of this numerical experiment will be to
quantify the errors incurred in the computation of the FSI forces in the fluid with respect to the degree of the quadrature rule
and the kernel function in use. A composite Gauss quadrature rule is adopted for the immersed solid, of degrees ½a; b� and
subintervals ½m;n�, as described above.

At first, we will restrict the analysis by considering a series of composite rules aligned with both the x- and y-fluid cells.
This initial constraint requires that we have as many subintervals for the composite rule as x- and y-fluid cells are being
intersected by the membrane. This will ensure that an optimal quadrature rule is used in an interval where the kernel does
Fig. 17. Geometry for the model problem used to test the influence of different quadrature rules. The width a of the membrane is 7:77 � 10�4 m for the case
of aligned quadrature rules and 8:8 � 10�4 m for the misaligned. All dimensions in the figure are in metres.
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not change definition and also that the membrane fills a whole number of fluid cells. We then utilise in each fluid cell ten-
sorised quadratures constructed from one dimensional Gaussian quadratures from orders 2 to 16. This will translate to an
overall composite rule in the membrane with a number of integration points ranging from 1440 to 92,160. The importance of
this constraint lies in the fact that the kernels used in the interpolation are piecewise functions, with changes of definition at
known places. Aligned rules in this sense are those that respect the change of definition of the kernels. As it will be shown
later on, this restriction can be lifted for the new spline-based kernels, providing more flexibility on the construction of quad-
rature rules.

The relative error in L1 norm of the FSI forces evaluated in the fluid cell edges is computed as a function of the number of
integration points for both non-spline-based kernels and spline-based kernels. As there is not a closed form solution to this
problem, the solutions obtained with the finest solid discretisation for each different simulation are used to compute the
error norm in each different graph. As can be seen in Fig. 19, there is a clear advantage in the use of tensorised quadratures,
as the error decreases rapidly. For the spline-based kernels presented here, ‘k15’ and ‘k16’, one dimensional rule of order 4
(corresponding to 5760 integration points for the membrane) or higher are sufficient to guarantee relative errors in the order
of 10�8. In contrast, non-spline-based kernels, ‘k2’ and ‘k3’, require rules of at least order 7 in each dimension (leading to
17,640 points) to achieve similar levels of accuracy. Roma–Peskin’s kernel ‘k3’ requires rules of at least order 9, raising
the cost to 29,160 integration points.

Note that these quadrature rules are also compatible with the changes in definition of the non-spline based kernel ‘k3’.
Peskin’s kernel changes definition in whole multiples of the mesh size, whereas Peskin–Roma’s kernel changes in half-mul-
tiples. See Fig. 18 for a pictorial representation of the changes of definition for several kernels.

Spline-based kernels ‘k15’ and ‘k16’ benefit more from the use of high-order quadrature rules than the non-spline-based
kernels ‘k2’ and ‘k3’. This is clearly due to the fact that both kernels ‘k15’ and ‘k16’ are at least C5, whereas kernels ‘k2’ and
‘k3’ are only C1. Crucially, if these quadrature rules are to be used for a structure domain of arbitrary geometry (i.e. in rect-
angular subdomains contained within the structure domain), then there is a clear advantage in using the newer spline-based
kernels as they incur a cost that is 3–5 times smaller (merely in the number of integration points) than classical IBM non-
spline-based kernels.

Let us now consider the effect of these type of quadrature rules after 50 fully converged timesteps. A full timestep in the
ISPM involves a fixed point iteration to ensure coupling of both fluid and structure to a given set tolerance. In the following
computations, we will consider a tolerance in the relative error in the L1 norm of 10�9. Each iteration in the fixed-point loop
will then require the evaluation of the FSI forces, which will be subjected to the integration errors described above.

Fig. 20 shows the convergence pattern after 50 fully converged timesteps, where the regularity of the new spline-based
kernels poses an advantage with respect to those that lack regularity. An additional comparison with low-order (uniform
spacing) quadrature rules has been included in the same figure, which highlights the vast difference in computational cost
between using high-order and uniform spacing quadrature rules. Finally, Fig. 21 shows the convergence pattern after 1000
fully converged timesteps. Note that after this number of time steps the membrane has deformed considerably and the nodes
used to integrate the energy potential have crossed kernel definition boundaries (see Fig. 18). As it can be observed in the
graph, the new spline-based kernels are far more stable and achieve far greater accuracy than non-spline-based kernels even
when the quadrature rule is unaligned. The misalignment of the quadrature rule will be the general norm as the movement
of the structure through the fluid will produce changing misalignment with respect to the fluid cells. The other interesting
Fig. 18. Change of definition (branch) for each kernel. Each colour-filled cell denotes a region of the computational domain where the kernel is defined by
the same functional branch. Boundaries between colours are therefore the locations for possible lack of regularity. Left blocks: kernels centred at vertical
edges. Right blocks: kernels centred at horizontal edges. From top to bottom row: Peskin’s kernel, Peskin–Roma’s kernel and new kernel ‘k15’.



Fig. 19. Relative error in L1-norm in the computation of the FSI forces for model problem 8.3 for one iteration. Continuous lines denote errors in the x
component and dashed lines in the y components. Left: errors with respect to the overall number of integration points in the membrane. Right: errors with
respect to the degree of the Gaussian quadrature rule (in each coordinate direction).

Fig. 20. Relative error in L1-norm in the computation of the FSI forces for model problem 8.3 for 50 timesteps. Continuous lines denote errors for the high
order quadrature rules, while dashed and dotted lines represent errors when using a quadrature rule with uniform spacing and a dual-mesh based one (see
Fig. 6). As it can be observed from the figure, errors in the computation of FSI forces converge substantially faster when high order quadrature rules are
employed. Left: errors with respect to the overall number of integration points in the membrane. Right: errors with respect to the degree of the Gaussian
quadrature rule.

Fig. 21. Relative error in L1-norm in the computation of the FSI forces for model problem 8.3 for 1000 timesteps. Continuous lines denote errors in the x
component and dashed lines in the y components. Left: errors with respect to the overall number of integration points in the membrane. Right: errors with
respect to the degree of the Gaussian quadrature rule (in each coordinate direction).
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Fig. 22. Streamlines and evolution over time for model problem 8.4 using the new spline-based kernel ‘k15’ for G ¼ 0:1 and spatial discretisation case Q1 in
Table 4. Dots in blue are integration points used in the ISPM, line in red is the reference solution obtained with the EIBM and matched against the literature
[27]. The small angle in blue has been added to the contour to aid visualisation of the rotation of the disc.
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fact that can be observed is that there is faster decay in the error for the spline-based kernels. This is to be expected, as a
higher order quadrature rule can exploit the higher regularity of the newer kernels. For arbitrarily complex geometries,
including three-dimensional cases, the optimal procedure for construction of quadrature rules is an open problem, but
the authors have opted for the initial tessellation of the geometry by rectangles/prisms, which can be efficiently integrated
using the tensorised quadrature rules described above, and an additional mesh of n-simplices for the remaining geometry,
which can be in turn integrated using high-order quadrature rules customary in the FEM.

Classical IBM non-spline-based kernels are only able to maintain the relative error in the computation of the FSI forces
within a tolerance of 10�4, but with a great computational expense. The spline-based kernels ‘k15’ and ‘k16’ still show excel-
lent convergence properties.
8.4. A deformable cylinder in a lid-driven cavity

In this section we consider a common benchmark in the context of solvers for fluid–structure interaction problems
[27,24,55]. The main objective of this section is not only to show that the ISPM is able to successfully solve the problem
and match existing results in the literature, but that it is capable of preserving the volume of the cylinder in a similar
way to alternative immersed methodologies. A combination of immersed methodologies will be applied to simulate the mo-
tion and deformation of an elastic cylinder in a ½0;1� 	 ½0;1� lid-driven cavity (with l ¼ 10�2, q ¼ 1). The stress-free cylinder
of radius 0:2 is initially centred at ð0:6;0:5Þ, zero velocity is imposed at all walls, except the top one, where a horizontal
velocity U ¼ 1 is applied (corresponding to Re ¼ 100). Two cases will be considered, the first where the cylinder is highly
deformable (G ¼ 0:1) and the second where it is almost rigid (G ¼ 10). The fluid is discretised using a 128	 128 Cartesian
staggered grid.

The flow streamlines and solid deformation for the deformable and rigid cases using the ISPM and spline-based kernel
‘k15’ can be visualised in Figs. 22 (spatial discretisation case Q1 in Table 4) and 23 (spatial discretisation case Q3 in Table 4),
respectively. As it can be observed from Fig. 22, for the case G ¼ 0:1, a considerable deformation can be observed, whereas for
G ¼ 10, (see Fig. 23) the cylinder appears almost rigid. In both cases, an almost perfect agreement can be observed with re-
sults present in the literature [27,55] and those obtained using the EIBM (red outline in both figures). Results obtained with
all the other spatial discretisation cases are almost indistinguishable. It is worth noting that the rigid case can be solved with
a coarser spatial discretisation than the highly deformable one.

A thorough parametric study has been performed to quantify the dependence of overall preservation of volume on several
factors, namely: time step Dt, nonlinear coupling tolerance e, refinement of solid and type of solid discretisation. It is possible
to show that both Dt and e play a negligible role in volume preservation in both the highly deformable and rigid cylinder
cases, since the largest contribution to the error in volume preservation is produced by spatial discretisation. The errors
introduced by temporal integration of the position of nodes/integration points are negligible in comparison due to the small
size of the time step since the scheme employed is explicit. The nonlinear coupling tolerance e plays no role in volume pres-
ervation if chosen to be less than 10�5.

A series of spatial discretisations have been considered in order to assess their influence on volume preservation. For the
case of the EIBM, several meshes with various degrees and type of refinement have been chosen (see entries M1–M4 in Ta-
ble 4). Note how cases M1 and M3 are almost uniform meshes (M1 finer, M3 coarser), whereas M2 and M4 have been pur-
posefully refined near the boundary of the cylinder. For the ISPM and kernel ‘k15’, high order quadrature rules can be used
(see entries Q2 and Q4 in Table 4). A composite mapped quadrature (polar coordinates mapping) from the square to the cyl-
inder (circle) is considered (composite mapped Gauss–Legendre rule in both radial and angular coordinates). The combina-
tion of the ISPM with Peskin’s kernel (‘k2’) has to resort to either mapped low-order composite quadrature rules (see entries
Q1 and Q3 in Table 4) or one constructed from the dual-mesh of a FE mesh. For all immersed methodologies, the same time
Table 4
Discretisation parameters for deformable/rigid cylinder in a lid driven cavity flow (Section 8.4). In the table, CGL stands for composite Gauss–Legendre
quadrature rule, ‘deg ½a; b�’ denotes (uniform) degrees a and b in the parametric space, and likewise, ‘sub ½m; n�’ denotes m and n subdivisions in parametric
space ðr; hÞ for the composite rule. Note in the table that nodes are interpreted as integration nodes for the case of the ISPM and as mesh nodes for the EIBM.
Element numbers are only representative for the EIBM. In the case of the ISPM, elements are only used in visualisation, not computation. Nodal density is
defined as the average number of (solid) nodes per fluid cell.

Name Nodes Elements Quadrature rule/mesh type Nodal density

Q1 7500 14,602 CGL, polar mapping, deg ½1;1�, sub ½50;150� 3.64
Q2 10,000 19,502 CGL, polar mapping, deg ½5;5�, sub ½10;40� 4.857
Q3 2700 5162 CGL, polar mapping, deg ½1;1�, sub ½30;90� 1.3114
Q4 3600 6902 CGL, polar mapping, deg ½3;3�, sub ½10;40� 1.7485
M1 13,023 25,623 FEM mesh, 210 contour points, hmax ¼ 4 � 10�3 6.3262

M2 5587 10,441 FEM mesh, 719 contour points, hmax ¼ 5 � 10�3 2.7137

M3 3329 6405 FEM mesh, 126 contour points, hmax ¼ 8 � 10�3 1.6176

M4 5798 10,589 FEM mesh, 503 contour points, hmax ¼ 8 � 10�3 2.8162



Fig. 23. Streamlines and evolution over time for model problem 8.4 using the new spline-based kernel ‘k15’ for G ¼ 10 and spatial discretisation case Q3 in
Table 4. Dots in blue are integration points used in the ISPM, line in red is reference solution obtained with the EIBM and matched against the literature [27].
The small angle in blue has been added to the contour to aid visualisation of the rotation of the disc.

Fig. 24. Volume conservation for model problem 8.4 using different immersed methodologies. See Table 4 for the details of spatial discretisation.
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integration scheme is used with Dt ¼ 3:1789 � 10�4 and nonlinear coupling tolerance e ¼ 10�7, a choice that is optimal (in the
sense of minimising the total number of iterations) and produces independent volume preservation results from Dt and e.

In Fig. 24, the evolution over time of the relative error in volume conservation for the cylinder is depicted. In the case of
the ISPM, quadrature points have been deliberately placed on the boundary of the solid domain in order to calculate in an ad
hoc manner (using an auxiliary Delaunay mesh which connects these integration points) the volume of the immersed struc-
ture. A comparison is made between the ISPM and EIBM with Peskin’s original kernel and the new spline-based kernel ‘k15’
for both methodologies and several spatial discretisations, as it has been remarked earlier that neither Dt nor e have any sig-
nificant influence in the above curves. As it can be observed for both cases, the ISPM preserves the volume of the structure in
an order of magnitude similar to that of the EIBM for this particular problem. The comparison with the EIBM in combination
with the new kernel ‘k15’ has been included just for completeness. It is important to remark that this kernel has not been
designed for the EIBM, and as it has been shown in other examples: the EIBM does not benefit from it.
9. Conclusions

In this paper, the Immersed Structural Potential Method recently introduced in [1] is further enhanced and optimised by
means of two new updates. First, a key improvement is the introduction of a new family of spline-based kernel functions
satisfying prescribed reproducibility conditions but with improved order of regularity. These new kernels show excellent
numerical results by removing spurious oscillations within the solution field (and its spatial derivatives) in comparison with
those obtained through alternative classical non-spline based IBM kernel functions. Second, this new family of kernels can
take full advantage of the use of highly efficient high-order quadrature rules for the numerical integration of the immersed
structural potential, rendering optimal convergence pattern (even for low order of quadrature). The methodology has also
been presented from a complete variational point of view (i.e. both fluid and structure) making reference to existing im-
mersed methodologies, in order to draw some comparisons in terms of accuracy, preservation of the incompressibility con-
straint and computational speed. In the authors’ opinion, a more efficient coupling algorithm, replacing the existing fixed
point iteration method, is the final aspect necessary to optimise the performance of the methodology. This new coupling
methodology within the context of three dimensional applications is the objective of a subsequent publication.
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