Journal article 1030 views
Spinning flavor branes and fermion pairing instabilities
Physical Review D, Volume: 84, Issue: 2
Swansea University Author: Prem Kumar
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1103/PhysRevD.84.026003
Abstract
We consider probe Dp-branes, p = 3, 5, 7, in global AdS5 × S5, rotating along an internal direction in the S5. These are dual to strongly interacting N = 4 SYM on S3 with massless fundamental flavours, in the presence of an R-symmetry chemical potential for flavour fermions. For massless, “AdS-filli...
Published in: | Physical Review D |
---|---|
Published: |
2011
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa7465 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2013-07-23T11:58:24Z |
---|---|
last_indexed |
2020-07-16T18:19:44Z |
id |
cronfa7465 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-07-16T14:33:07.2719015</datestamp><bib-version>v2</bib-version><id>7465</id><entry>2012-02-23</entry><title>Spinning flavor branes and fermion pairing instabilities</title><swanseaauthors><author><sid>087fd097167d724ce1b13cb285741ef5</sid><ORCID>0000-0003-0867-4213</ORCID><firstname>Prem</firstname><surname>Kumar</surname><name>Prem Kumar</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2012-02-23</date><deptcode>SPH</deptcode><abstract>We consider probe Dp-branes, p = 3, 5, 7, in global AdS5 × S5, rotating along an internal direction in the S5. These are dual to strongly interacting N = 4 SYM on S3 with massless fundamental flavours, in the presence of an R-symmetry chemical potential for flavour fermions. For massless, “AdS-filling” Dp-brane embed- dings at zero temperature, we find an infinite set of threshold values of the chemical potential at which instabilities are triggered. The onset of instability is always pre- ceded by metastability of the zero density state. From the onset values of the chemical potential, we infer that unstable directions favour a homogeneous condensate of a bilinear made from fermion harmonics, or Cooper pairing. We confirm this picture both numerically and analytically. The linearized analysis showing the appearance of instabilities involves a charged scalar in global AdS space coupled to a (large) constant background gauge potential. The resulting frequency space correlator of the fermion bilinear at strong coupling displays poles in the upper half plane. In contrast, the correlator at zero coupling exhibits Pauli blocking due to occupation of states below the Fermi level, but no instabilities. The end-point of the strong coupling instability is not visible in our setup.</abstract><type>Journal Article</type><journal>Physical Review D</journal><volume>84</volume><journalNumber>2</journalNumber><publisher/><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2011</publishedYear><publishedDate>2011-12-31</publishedDate><doi>10.1103/PhysRevD.84.026003</doi><url/><notes/><college>COLLEGE NANME</college><department>Physics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SPH</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-16T14:33:07.2719015</lastEdited><Created>2012-02-23T17:01:56.0000000</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Prem</firstname><surname>Kumar</surname><orcid>0000-0003-0867-4213</orcid><order>1</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2020-07-16T14:33:07.2719015 v2 7465 2012-02-23 Spinning flavor branes and fermion pairing instabilities 087fd097167d724ce1b13cb285741ef5 0000-0003-0867-4213 Prem Kumar Prem Kumar true false 2012-02-23 SPH We consider probe Dp-branes, p = 3, 5, 7, in global AdS5 × S5, rotating along an internal direction in the S5. These are dual to strongly interacting N = 4 SYM on S3 with massless fundamental flavours, in the presence of an R-symmetry chemical potential for flavour fermions. For massless, “AdS-filling” Dp-brane embed- dings at zero temperature, we find an infinite set of threshold values of the chemical potential at which instabilities are triggered. The onset of instability is always pre- ceded by metastability of the zero density state. From the onset values of the chemical potential, we infer that unstable directions favour a homogeneous condensate of a bilinear made from fermion harmonics, or Cooper pairing. We confirm this picture both numerically and analytically. The linearized analysis showing the appearance of instabilities involves a charged scalar in global AdS space coupled to a (large) constant background gauge potential. The resulting frequency space correlator of the fermion bilinear at strong coupling displays poles in the upper half plane. In contrast, the correlator at zero coupling exhibits Pauli blocking due to occupation of states below the Fermi level, but no instabilities. The end-point of the strong coupling instability is not visible in our setup. Journal Article Physical Review D 84 2 31 12 2011 2011-12-31 10.1103/PhysRevD.84.026003 COLLEGE NANME Physics COLLEGE CODE SPH Swansea University 2020-07-16T14:33:07.2719015 2012-02-23T17:01:56.0000000 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Prem Kumar 0000-0003-0867-4213 1 |
title |
Spinning flavor branes and fermion pairing instabilities |
spellingShingle |
Spinning flavor branes and fermion pairing instabilities Prem Kumar |
title_short |
Spinning flavor branes and fermion pairing instabilities |
title_full |
Spinning flavor branes and fermion pairing instabilities |
title_fullStr |
Spinning flavor branes and fermion pairing instabilities |
title_full_unstemmed |
Spinning flavor branes and fermion pairing instabilities |
title_sort |
Spinning flavor branes and fermion pairing instabilities |
author_id_str_mv |
087fd097167d724ce1b13cb285741ef5 |
author_id_fullname_str_mv |
087fd097167d724ce1b13cb285741ef5_***_Prem Kumar |
author |
Prem Kumar |
author2 |
Prem Kumar |
format |
Journal article |
container_title |
Physical Review D |
container_volume |
84 |
container_issue |
2 |
publishDate |
2011 |
institution |
Swansea University |
doi_str_mv |
10.1103/PhysRevD.84.026003 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
document_store_str |
0 |
active_str |
0 |
description |
We consider probe Dp-branes, p = 3, 5, 7, in global AdS5 × S5, rotating along an internal direction in the S5. These are dual to strongly interacting N = 4 SYM on S3 with massless fundamental flavours, in the presence of an R-symmetry chemical potential for flavour fermions. For massless, “AdS-filling” Dp-brane embed- dings at zero temperature, we find an infinite set of threshold values of the chemical potential at which instabilities are triggered. The onset of instability is always pre- ceded by metastability of the zero density state. From the onset values of the chemical potential, we infer that unstable directions favour a homogeneous condensate of a bilinear made from fermion harmonics, or Cooper pairing. We confirm this picture both numerically and analytically. The linearized analysis showing the appearance of instabilities involves a charged scalar in global AdS space coupled to a (large) constant background gauge potential. The resulting frequency space correlator of the fermion bilinear at strong coupling displays poles in the upper half plane. In contrast, the correlator at zero coupling exhibits Pauli blocking due to occupation of states below the Fermi level, but no instabilities. The end-point of the strong coupling instability is not visible in our setup. |
published_date |
2011-12-31T03:09:17Z |
_version_ |
1763749876379680768 |
score |
11.037144 |