Journal article
Dual-plane wavefront sensing using a vision transformer
Optics Express, Volume: 34, Issue: 4, Pages: 6455 - 6467
Swansea University Authors:
Evan O'Rourke, Kevin O'Keeffe
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1364/oe.586748
Abstract
Image-based wavefront sensing using deep-learning allows Zernike coefficients to be estimated directly from intensity measurements. To date, the majority of experiments have focused on using convolutional neural networks to estimate coefficients. Here we demonstrate a dual-plane wavefront sensor tra...
| Published in: | Optics Express |
|---|---|
| ISSN: | 1094-4087 |
| Published: |
Optica Publishing Group
2026
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa71410 |
| first_indexed |
2026-02-12T17:02:52Z |
|---|---|
| last_indexed |
2026-02-13T05:35:15Z |
| id |
cronfa71410 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><datestamp>2026-02-12T17:02:50.6155568</datestamp><bib-version>v2</bib-version><id>71410</id><entry>2026-02-12</entry><title>Dual-plane wavefront sensing using a vision transformer</title><swanseaauthors><author><sid>ef666d01c074b032cc94f53b9604eda5</sid><firstname>Evan</firstname><surname>O'Rourke</surname><name>Evan O'Rourke</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e17dfae9042b113b28e8340ea1572db4</sid><ORCID>0000-0003-2085-0806</ORCID><firstname>Kevin</firstname><surname>O'Keeffe</surname><name>Kevin O'Keeffe</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2026-02-12</date><deptcode>BGPS</deptcode><abstract>Image-based wavefront sensing using deep-learning allows Zernike coefficients to be estimated directly from intensity measurements. To date, the majority of experiments have focused on using convolutional neural networks to estimate coefficients. Here we demonstrate a dual-plane wavefront sensor trained using a vision transformer model and compare its performance to that of the widely used convolutional neural network (CNN) architecture. Both results of experiment and simulation indicate that the vision transform can outperform the CNN where image data is significantly down sampled, due to the former's ability to more accurately predict high-order Zernike coefficients.</abstract><type>Journal Article</type><journal>Optics Express</journal><volume>34</volume><journalNumber>4</journalNumber><paginationStart>6455</paginationStart><paginationEnd>6467</paginationEnd><publisher>Optica Publishing Group</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1094-4087</issnElectronic><keywords/><publishedDay>23</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2026</publishedYear><publishedDate>2026-02-23</publishedDate><doi>10.1364/oe.586748</doi><url>https://doi.org/10.1364/oe.586748</url><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>Engineering and Physical Sciences Research Council</funders><projectreference>EP/W524694/1</projectreference><lastEdited>2026-02-12T17:02:50.6155568</lastEdited><Created>2026-02-12T16:49:19.2014716</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Evan</firstname><surname>O'Rourke</surname><order>1</order></author><author><firstname>Kevin</firstname><surname>O'Keeffe</surname><orcid>0000-0003-2085-0806</orcid><order>2</order></author></authors><documents/><OutputDurs><OutputDur><Id>346</Id><DataControllerName>Kevin O'Keeffe</DataControllerName><DataControllerOrcid>0000-0003-2085-0806</DataControllerOrcid><DataControllerEmail>k.okeeffe@swansea.ac.uk</DataControllerEmail><IsDataAvailableOnline>true</IsDataAvailableOnline><DataNotAvailableOnlineReasonId xsi:nil="true"/><DurUrl>10.5281/zenodo.18268629</DurUrl><IsDurRestrictions>false</IsDurRestrictions><DurRestrictionReasonId xsi:nil="true"/><DurEmbargoDate xsi:nil="true"/></OutputDur></OutputDurs></rfc1807> |
| spelling |
2026-02-12T17:02:50.6155568 v2 71410 2026-02-12 Dual-plane wavefront sensing using a vision transformer ef666d01c074b032cc94f53b9604eda5 Evan O'Rourke Evan O'Rourke true false e17dfae9042b113b28e8340ea1572db4 0000-0003-2085-0806 Kevin O'Keeffe Kevin O'Keeffe true false 2026-02-12 BGPS Image-based wavefront sensing using deep-learning allows Zernike coefficients to be estimated directly from intensity measurements. To date, the majority of experiments have focused on using convolutional neural networks to estimate coefficients. Here we demonstrate a dual-plane wavefront sensor trained using a vision transformer model and compare its performance to that of the widely used convolutional neural network (CNN) architecture. Both results of experiment and simulation indicate that the vision transform can outperform the CNN where image data is significantly down sampled, due to the former's ability to more accurately predict high-order Zernike coefficients. Journal Article Optics Express 34 4 6455 6467 Optica Publishing Group 1094-4087 23 2 2026 2026-02-23 10.1364/oe.586748 https://doi.org/10.1364/oe.586748 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University SU Library paid the OA fee (TA Institutional Deal) Engineering and Physical Sciences Research Council EP/W524694/1 2026-02-12T17:02:50.6155568 2026-02-12T16:49:19.2014716 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Evan O'Rourke 1 Kevin O'Keeffe 0000-0003-2085-0806 2 346 Kevin O'Keeffe 0000-0003-2085-0806 k.okeeffe@swansea.ac.uk true 10.5281/zenodo.18268629 false |
| title |
Dual-plane wavefront sensing using a vision transformer |
| spellingShingle |
Dual-plane wavefront sensing using a vision transformer Evan O'Rourke Kevin O'Keeffe |
| title_short |
Dual-plane wavefront sensing using a vision transformer |
| title_full |
Dual-plane wavefront sensing using a vision transformer |
| title_fullStr |
Dual-plane wavefront sensing using a vision transformer |
| title_full_unstemmed |
Dual-plane wavefront sensing using a vision transformer |
| title_sort |
Dual-plane wavefront sensing using a vision transformer |
| author_id_str_mv |
ef666d01c074b032cc94f53b9604eda5 e17dfae9042b113b28e8340ea1572db4 |
| author_id_fullname_str_mv |
ef666d01c074b032cc94f53b9604eda5_***_Evan O'Rourke e17dfae9042b113b28e8340ea1572db4_***_Kevin O'Keeffe |
| author |
Evan O'Rourke Kevin O'Keeffe |
| author2 |
Evan O'Rourke Kevin O'Keeffe |
| format |
Journal article |
| container_title |
Optics Express |
| container_volume |
34 |
| container_issue |
4 |
| container_start_page |
6455 |
| publishDate |
2026 |
| institution |
Swansea University |
| issn |
1094-4087 |
| doi_str_mv |
10.1364/oe.586748 |
| publisher |
Optica Publishing Group |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
| url |
https://doi.org/10.1364/oe.586748 |
| document_store_str |
0 |
| active_str |
0 |
| description |
Image-based wavefront sensing using deep-learning allows Zernike coefficients to be estimated directly from intensity measurements. To date, the majority of experiments have focused on using convolutional neural networks to estimate coefficients. Here we demonstrate a dual-plane wavefront sensor trained using a vision transformer model and compare its performance to that of the widely used convolutional neural network (CNN) architecture. Both results of experiment and simulation indicate that the vision transform can outperform the CNN where image data is significantly down sampled, due to the former's ability to more accurately predict high-order Zernike coefficients. |
| published_date |
2026-02-23T05:35:15Z |
| _version_ |
1856987112491974656 |
| score |
11.096068 |

