Journal article 26 views
Anisotropic mesh spacing prediction using neural networks
Computer-Aided Design
Swansea University Authors:
Callum Lock, Oubay Hassan , Rubén Sevilla
, Jason Jones
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1016/j.cad.2026.104040
Abstract
This work presents a framework to predict near-optimal anisotropic spacing functions suitable to perform simulations with unseen operating conditions or geometric configurations. The strategy consists of utilising the vast amount of high-fidelity data available in industry to compute a target anisot...
| Published in: | Computer-Aided Design |
|---|---|
| Published: |
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa71372 |
| first_indexed |
2026-02-02T18:02:35Z |
|---|---|
| last_indexed |
2026-02-03T05:33:15Z |
| id |
cronfa71372 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2026-02-02T18:02:34.3439620</datestamp><bib-version>v2</bib-version><id>71372</id><entry>2026-02-02</entry><title>Anisotropic mesh spacing prediction using neural networks</title><swanseaauthors><author><sid>3eeb9d55ddd52c145526e56117933261</sid><firstname>Callum</firstname><surname>Lock</surname><name>Callum Lock</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>07479d73eba3773d8904cbfbacc57c5b</sid><ORCID>0000-0001-7472-3218</ORCID><firstname>Oubay</firstname><surname>Hassan</surname><name>Oubay Hassan</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b542c87f1b891262844e95a682f045b6</sid><ORCID>0000-0002-0061-6214</ORCID><firstname>Rubén</firstname><surname>Sevilla</surname><name>Rubén Sevilla</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>aa4865d48c53a0df1c1547171826eab9</sid><firstname>Jason</firstname><surname>Jones</surname><name>Jason Jones</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2026-02-02</date><deptcode>ACEM</deptcode><abstract>This work presents a framework to predict near-optimal anisotropic spacing functions suitable to perform simulations with unseen operating conditions or geometric configurations. The strategy consists of utilising the vast amount of high-fidelity data available in industry to compute a target anisotropic spacing and train an artificial neural network to predict the spacing for unseen scenarios. The trained neural network outputs the metric tensor at the nodes of a coarse background mesh that is then used to generate meshes for unseen cases. Examples are used to demonstrate the effect of the network hyperparameters and the training dataset on the accuracy of the predictions. The potential of the method is demonstrated for examples involving up to 11 geometric parameters on CFD simulations involving a full aircraft configuration.</abstract><type>Journal Article</type><journal>Computer-Aided Design</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords/><publishedDay>0</publishedDay><publishedMonth>0</publishedMonth><publishedYear>0</publishedYear><publishedDate>0001-01-01</publishedDate><doi>10.1016/j.cad.2026.104040</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>Engineering and Physical Sciences Research Council (EP/T517987/1)</funders><projectreference/><lastEdited>2026-02-02T18:02:34.3439620</lastEdited><Created>2026-02-02T17:52:20.3034425</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Callum</firstname><surname>Lock</surname><order>1</order></author><author><firstname>Oubay</firstname><surname>Hassan</surname><orcid>0000-0001-7472-3218</orcid><order>2</order></author><author><firstname>Rubén</firstname><surname>Sevilla</surname><orcid>0000-0002-0061-6214</orcid><order>3</order></author><author><firstname>Jason</firstname><surname>Jones</surname><order>4</order></author></authors><documents/><OutputDurs/></rfc1807> |
| spelling |
2026-02-02T18:02:34.3439620 v2 71372 2026-02-02 Anisotropic mesh spacing prediction using neural networks 3eeb9d55ddd52c145526e56117933261 Callum Lock Callum Lock true false 07479d73eba3773d8904cbfbacc57c5b 0000-0001-7472-3218 Oubay Hassan Oubay Hassan true false b542c87f1b891262844e95a682f045b6 0000-0002-0061-6214 Rubén Sevilla Rubén Sevilla true false aa4865d48c53a0df1c1547171826eab9 Jason Jones Jason Jones true false 2026-02-02 ACEM This work presents a framework to predict near-optimal anisotropic spacing functions suitable to perform simulations with unseen operating conditions or geometric configurations. The strategy consists of utilising the vast amount of high-fidelity data available in industry to compute a target anisotropic spacing and train an artificial neural network to predict the spacing for unseen scenarios. The trained neural network outputs the metric tensor at the nodes of a coarse background mesh that is then used to generate meshes for unseen cases. Examples are used to demonstrate the effect of the network hyperparameters and the training dataset on the accuracy of the predictions. The potential of the method is demonstrated for examples involving up to 11 geometric parameters on CFD simulations involving a full aircraft configuration. Journal Article Computer-Aided Design 0 0 0 0001-01-01 10.1016/j.cad.2026.104040 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University Engineering and Physical Sciences Research Council (EP/T517987/1) 2026-02-02T18:02:34.3439620 2026-02-02T17:52:20.3034425 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Callum Lock 1 Oubay Hassan 0000-0001-7472-3218 2 Rubén Sevilla 0000-0002-0061-6214 3 Jason Jones 4 |
| title |
Anisotropic mesh spacing prediction using neural networks |
| spellingShingle |
Anisotropic mesh spacing prediction using neural networks Callum Lock Oubay Hassan Rubén Sevilla Jason Jones |
| title_short |
Anisotropic mesh spacing prediction using neural networks |
| title_full |
Anisotropic mesh spacing prediction using neural networks |
| title_fullStr |
Anisotropic mesh spacing prediction using neural networks |
| title_full_unstemmed |
Anisotropic mesh spacing prediction using neural networks |
| title_sort |
Anisotropic mesh spacing prediction using neural networks |
| author_id_str_mv |
3eeb9d55ddd52c145526e56117933261 07479d73eba3773d8904cbfbacc57c5b b542c87f1b891262844e95a682f045b6 aa4865d48c53a0df1c1547171826eab9 |
| author_id_fullname_str_mv |
3eeb9d55ddd52c145526e56117933261_***_Callum Lock 07479d73eba3773d8904cbfbacc57c5b_***_Oubay Hassan b542c87f1b891262844e95a682f045b6_***_Rubén Sevilla aa4865d48c53a0df1c1547171826eab9_***_Jason Jones |
| author |
Callum Lock Oubay Hassan Rubén Sevilla Jason Jones |
| author2 |
Callum Lock Oubay Hassan Rubén Sevilla Jason Jones |
| format |
Journal article |
| container_title |
Computer-Aided Design |
| institution |
Swansea University |
| doi_str_mv |
10.1016/j.cad.2026.104040 |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
| document_store_str |
0 |
| active_str |
0 |
| description |
This work presents a framework to predict near-optimal anisotropic spacing functions suitable to perform simulations with unseen operating conditions or geometric configurations. The strategy consists of utilising the vast amount of high-fidelity data available in industry to compute a target anisotropic spacing and train an artificial neural network to predict the spacing for unseen scenarios. The trained neural network outputs the metric tensor at the nodes of a coarse background mesh that is then used to generate meshes for unseen cases. Examples are used to demonstrate the effect of the network hyperparameters and the training dataset on the accuracy of the predictions. The potential of the method is demonstrated for examples involving up to 11 geometric parameters on CFD simulations involving a full aircraft configuration. |
| published_date |
0001-01-01T05:35:09Z |
| _version_ |
1856987107156819968 |
| score |
11.096068 |

