No Cover Image

Journal article 102 views 7 downloads

Sustainable remanufacturing of mesoscopic carbon perovskite solar cells using green solvents

Karen Valadez Villalobos, Carys Worsley, Rodrigo Garcia Rodriguez, Trystan Watson Orcid Logo, Matthew Davies Orcid Logo

RSC Sustainability

Swansea University Authors: Karen Valadez Villalobos, Carys Worsley, Rodrigo Garcia Rodriguez, Trystan Watson Orcid Logo, Matthew Davies Orcid Logo

  • 71194.VoR.pdf

    PDF | Version of Record

    This article is licensed under the terms of a Creative Commons Attribution 3.0 Unported Licence.

    Download (601.66KB)

Check full text

DOI (Published version): 10.1039/d5su00707k

Abstract

We present a green-solvent remanufacturing strategy for mesoscopic carbon-based perovskite solar cells (CPSCs) that enables complete recovery of the printed device stack. By immersing aged devices in γ-valerolactone (GVL), the perovskite absorber can be selectively removed without harming the underl...

Full description

Published in: RSC Sustainability
ISSN: 2753-8125
Published: Royal Society of Chemistry (RSC)
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa71194
first_indexed 2026-01-05T13:54:08Z
last_indexed 2026-01-06T05:41:41Z
id cronfa71194
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2026-01-05T14:03:05.6771124</datestamp><bib-version>v2</bib-version><id>71194</id><entry>2026-01-05</entry><title>Sustainable remanufacturing of mesoscopic carbon perovskite solar cells using green solvents</title><swanseaauthors><author><sid>ed1f364a450ba609956e44a75da05bc0</sid><firstname>Karen</firstname><surname>Valadez Villalobos</surname><name>Karen Valadez Villalobos</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e74e27838a54d9df1fe7c5ee2cb8a126</sid><firstname>Carys</firstname><surname>Worsley</surname><name>Carys Worsley</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>fb0f6e1eeb02aedee895b457faa35445</sid><firstname>Rodrigo</firstname><surname>Garcia Rodriguez</surname><name>Rodrigo Garcia Rodriguez</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4ad478e342120ca3434657eb13527636</sid><ORCID>0000-0003-2595-5121</ORCID><firstname>Matthew</firstname><surname>Davies</surname><name>Matthew Davies</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2026-01-05</date><deptcode>EAAS</deptcode><abstract>We present a green-solvent remanufacturing strategy for mesoscopic carbon-based perovskite solar cells (CPSCs) that enables complete recovery of the printed device stack. By immersing aged devices in &#x3B3;-valerolactone (GVL), the perovskite absorber can be selectively removed without harming the underlying mesoporous carbon scaffold. Fresh perovskite is then reinfiltrated, restoring up to 89% of the device's first life power conversion efficiency (PCE). This sustainable method offers a promising route toward circularity in scalable perovskite photovoltaic technologies.</abstract><type>Journal Article</type><journal>RSC Sustainability</journal><volume>0</volume><journalNumber/><paginationStart/><paginationEnd/><publisher>Royal Society of Chemistry (RSC)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2753-8125</issnElectronic><keywords/><publishedDay>0</publishedDay><publishedMonth>0</publishedMonth><publishedYear>0</publishedYear><publishedDate>0001-01-01</publishedDate><doi>10.1039/d5su00707k</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm>External research funder(s) paid the OA fee (includes OA grants disbursed by the Library)</apcterm><funders>This work was made possible by support from the Engineering and Physical Sciences Research Council (EP/S001336/1 and EP/X025217/1) and through the funding of the SPECIFIC Innovation and Knowledge Centre by EPSRC (EP/ N020863/1), Innovate UK [920036], and the European Regional Development Fund [c80892] through the Welsh Government. MLD and TMW are also grateful for funding of the TEA@SUNRISE project, funded with UK aid from the UK government via the Transforming Energy Access platform, and to funding from the UK Government's Ayrton Challenge through the International Science Partnerships Fund (ISPF) as part of the REACH-PSM project.</funders><projectreference/><lastEdited>2026-01-05T14:03:05.6771124</lastEdited><Created>2026-01-05T13:50:36.6635757</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Karen</firstname><surname>Valadez Villalobos</surname><order>1</order></author><author><firstname>Carys</firstname><surname>Worsley</surname><order>2</order></author><author><firstname>Rodrigo</firstname><surname>Garcia Rodriguez</surname><order>3</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>4</order></author><author><firstname>Matthew</firstname><surname>Davies</surname><orcid>0000-0003-2595-5121</orcid><order>5</order></author></authors><documents><document><filename>71194__35898__7263fd30a1b245928f101d9bf840de20.pdf</filename><originalFilename>71194.VoR.pdf</originalFilename><uploaded>2026-01-05T13:55:02.9392868</uploaded><type>Output</type><contentLength>616101</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This article is licensed under the terms of a Creative Commons Attribution 3.0 Unported Licence.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/3.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2026-01-05T14:03:05.6771124 v2 71194 2026-01-05 Sustainable remanufacturing of mesoscopic carbon perovskite solar cells using green solvents ed1f364a450ba609956e44a75da05bc0 Karen Valadez Villalobos Karen Valadez Villalobos true false e74e27838a54d9df1fe7c5ee2cb8a126 Carys Worsley Carys Worsley true false fb0f6e1eeb02aedee895b457faa35445 Rodrigo Garcia Rodriguez Rodrigo Garcia Rodriguez true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 4ad478e342120ca3434657eb13527636 0000-0003-2595-5121 Matthew Davies Matthew Davies true false 2026-01-05 EAAS We present a green-solvent remanufacturing strategy for mesoscopic carbon-based perovskite solar cells (CPSCs) that enables complete recovery of the printed device stack. By immersing aged devices in γ-valerolactone (GVL), the perovskite absorber can be selectively removed without harming the underlying mesoporous carbon scaffold. Fresh perovskite is then reinfiltrated, restoring up to 89% of the device's first life power conversion efficiency (PCE). This sustainable method offers a promising route toward circularity in scalable perovskite photovoltaic technologies. Journal Article RSC Sustainability 0 Royal Society of Chemistry (RSC) 2753-8125 0 0 0 0001-01-01 10.1039/d5su00707k COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University External research funder(s) paid the OA fee (includes OA grants disbursed by the Library) This work was made possible by support from the Engineering and Physical Sciences Research Council (EP/S001336/1 and EP/X025217/1) and through the funding of the SPECIFIC Innovation and Knowledge Centre by EPSRC (EP/ N020863/1), Innovate UK [920036], and the European Regional Development Fund [c80892] through the Welsh Government. MLD and TMW are also grateful for funding of the TEA@SUNRISE project, funded with UK aid from the UK government via the Transforming Energy Access platform, and to funding from the UK Government's Ayrton Challenge through the International Science Partnerships Fund (ISPF) as part of the REACH-PSM project. 2026-01-05T14:03:05.6771124 2026-01-05T13:50:36.6635757 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Karen Valadez Villalobos 1 Carys Worsley 2 Rodrigo Garcia Rodriguez 3 Trystan Watson 0000-0002-8015-1436 4 Matthew Davies 0000-0003-2595-5121 5 71194__35898__7263fd30a1b245928f101d9bf840de20.pdf 71194.VoR.pdf 2026-01-05T13:55:02.9392868 Output 616101 application/pdf Version of Record true This article is licensed under the terms of a Creative Commons Attribution 3.0 Unported Licence. true eng http://creativecommons.org/licenses/by/3.0/
title Sustainable remanufacturing of mesoscopic carbon perovskite solar cells using green solvents
spellingShingle Sustainable remanufacturing of mesoscopic carbon perovskite solar cells using green solvents
Karen Valadez Villalobos
Carys Worsley
Rodrigo Garcia Rodriguez
Trystan Watson
Matthew Davies
title_short Sustainable remanufacturing of mesoscopic carbon perovskite solar cells using green solvents
title_full Sustainable remanufacturing of mesoscopic carbon perovskite solar cells using green solvents
title_fullStr Sustainable remanufacturing of mesoscopic carbon perovskite solar cells using green solvents
title_full_unstemmed Sustainable remanufacturing of mesoscopic carbon perovskite solar cells using green solvents
title_sort Sustainable remanufacturing of mesoscopic carbon perovskite solar cells using green solvents
author_id_str_mv ed1f364a450ba609956e44a75da05bc0
e74e27838a54d9df1fe7c5ee2cb8a126
fb0f6e1eeb02aedee895b457faa35445
a210327b52472cfe8df9b8108d661457
4ad478e342120ca3434657eb13527636
author_id_fullname_str_mv ed1f364a450ba609956e44a75da05bc0_***_Karen Valadez Villalobos
e74e27838a54d9df1fe7c5ee2cb8a126_***_Carys Worsley
fb0f6e1eeb02aedee895b457faa35445_***_Rodrigo Garcia Rodriguez
a210327b52472cfe8df9b8108d661457_***_Trystan Watson
4ad478e342120ca3434657eb13527636_***_Matthew Davies
author Karen Valadez Villalobos
Carys Worsley
Rodrigo Garcia Rodriguez
Trystan Watson
Matthew Davies
author2 Karen Valadez Villalobos
Carys Worsley
Rodrigo Garcia Rodriguez
Trystan Watson
Matthew Davies
format Journal article
container_title RSC Sustainability
container_volume 0
institution Swansea University
issn 2753-8125
doi_str_mv 10.1039/d5su00707k
publisher Royal Society of Chemistry (RSC)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering
document_store_str 1
active_str 0
description We present a green-solvent remanufacturing strategy for mesoscopic carbon-based perovskite solar cells (CPSCs) that enables complete recovery of the printed device stack. By immersing aged devices in γ-valerolactone (GVL), the perovskite absorber can be selectively removed without harming the underlying mesoporous carbon scaffold. Fresh perovskite is then reinfiltrated, restoring up to 89% of the device's first life power conversion efficiency (PCE). This sustainable method offers a promising route toward circularity in scalable perovskite photovoltaic technologies.
published_date 0001-01-01T05:34:49Z
_version_ 1856896489204219904
score 11.096068