Conference Paper/Proceeding/Abstract 75 views
Formal assurance for railway interlockings: Verifying Z3 SAT proofs with Tseitin in Rocq
RocqPL 2026
Swansea University Authors:
Harry Bryant, Monika Seisenberger , Anton Setzer
Abstract
We present a method for verifying in the theorem prover Rocq SAT proofs of railway interlockings generated by Z3 using the RUP format and Tseitin Transformations. We outline the checking procedures for RUP and the supporting Tseitin Transformation rules. This includes steps to prove their correctnes...
| Published in: | RocqPL 2026 |
|---|---|
| Published: |
Rennes, France
ACM
|
| Online Access: |
https://popl26.sigplan.org/home/rocqpl-2026#event-overview |
| URI: | https://cronfa.swan.ac.uk/Record/cronfa71163 |
| first_indexed |
2025-12-19T17:52:13Z |
|---|---|
| last_indexed |
2026-01-23T06:52:02Z |
| id |
cronfa71163 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2026-01-22T12:05:13.7536824</datestamp><bib-version>v2</bib-version><id>71163</id><entry>2025-12-19</entry><title>Formal assurance for railway interlockings: Verifying Z3 SAT proofs with Tseitin in Rocq</title><swanseaauthors><author><sid>2efb4f6a3eec27ae4337ecd971aaeca4</sid><firstname>Harry</firstname><surname>Bryant</surname><name>Harry Bryant</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>d035399b2b324a63fe472ce0344653e0</sid><ORCID>0000-0002-2226-386X</ORCID><firstname>Monika</firstname><surname>Seisenberger</surname><name>Monika Seisenberger</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>5f7695285397f46d121207120247c2ae</sid><ORCID>0000-0001-5322-6060</ORCID><firstname>Anton</firstname><surname>Setzer</surname><name>Anton Setzer</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-12-19</date><deptcode>MACS</deptcode><abstract>We present a method for verifying in the theorem prover Rocq SAT proofs of railway interlockings generated by Z3 using the RUP format and Tseitin Transformations. We outline the checking procedures for RUP and the supporting Tseitin Transformation rules. This includes steps to prove their correctness and the extraction of a fully verified checker. We prove Tseitin steps correct by turning them into tautologies using a novel technique. The verification process is crucial in the context of railway interlockings, where ensuring logical soundness and a high level of safety are essential.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>RocqPL 2026</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher>ACM</publisher><placeOfPublication>Rennes, France</placeOfPublication><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords/><publishedDay>0</publishedDay><publishedMonth>0</publishedMonth><publishedYear>0</publishedYear><publishedDate>0001-01-01</publishedDate><doi/><url>https://popl26.sigplan.org/home/rocqpl-2026#event-overview</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2026-01-22T12:05:13.7536824</lastEdited><Created>2025-12-19T17:38:34.0721325</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Harry</firstname><surname>Bryant</surname><order>1</order></author><author><firstname>Andrew</firstname><surname>Lawrence</surname><order>2</order></author><author><firstname>Monika</firstname><surname>Seisenberger</surname><orcid>0000-0002-2226-386X</orcid><order>3</order></author><author><firstname>Anton</firstname><surname>Setzer</surname><orcid>0000-0001-5322-6060</orcid><order>4</order></author></authors><documents/><OutputDurs/></rfc1807> |
| spelling |
2026-01-22T12:05:13.7536824 v2 71163 2025-12-19 Formal assurance for railway interlockings: Verifying Z3 SAT proofs with Tseitin in Rocq 2efb4f6a3eec27ae4337ecd971aaeca4 Harry Bryant Harry Bryant true false d035399b2b324a63fe472ce0344653e0 0000-0002-2226-386X Monika Seisenberger Monika Seisenberger true false 5f7695285397f46d121207120247c2ae 0000-0001-5322-6060 Anton Setzer Anton Setzer true false 2025-12-19 MACS We present a method for verifying in the theorem prover Rocq SAT proofs of railway interlockings generated by Z3 using the RUP format and Tseitin Transformations. We outline the checking procedures for RUP and the supporting Tseitin Transformation rules. This includes steps to prove their correctness and the extraction of a fully verified checker. We prove Tseitin steps correct by turning them into tautologies using a novel technique. The verification process is crucial in the context of railway interlockings, where ensuring logical soundness and a high level of safety are essential. Conference Paper/Proceeding/Abstract RocqPL 2026 ACM Rennes, France 0 0 0 0001-01-01 https://popl26.sigplan.org/home/rocqpl-2026#event-overview COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2026-01-22T12:05:13.7536824 2025-12-19T17:38:34.0721325 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Harry Bryant 1 Andrew Lawrence 2 Monika Seisenberger 0000-0002-2226-386X 3 Anton Setzer 0000-0001-5322-6060 4 |
| title |
Formal assurance for railway interlockings: Verifying Z3 SAT proofs with Tseitin in Rocq |
| spellingShingle |
Formal assurance for railway interlockings: Verifying Z3 SAT proofs with Tseitin in Rocq Harry Bryant Monika Seisenberger Anton Setzer |
| title_short |
Formal assurance for railway interlockings: Verifying Z3 SAT proofs with Tseitin in Rocq |
| title_full |
Formal assurance for railway interlockings: Verifying Z3 SAT proofs with Tseitin in Rocq |
| title_fullStr |
Formal assurance for railway interlockings: Verifying Z3 SAT proofs with Tseitin in Rocq |
| title_full_unstemmed |
Formal assurance for railway interlockings: Verifying Z3 SAT proofs with Tseitin in Rocq |
| title_sort |
Formal assurance for railway interlockings: Verifying Z3 SAT proofs with Tseitin in Rocq |
| author_id_str_mv |
2efb4f6a3eec27ae4337ecd971aaeca4 d035399b2b324a63fe472ce0344653e0 5f7695285397f46d121207120247c2ae |
| author_id_fullname_str_mv |
2efb4f6a3eec27ae4337ecd971aaeca4_***_Harry Bryant d035399b2b324a63fe472ce0344653e0_***_Monika Seisenberger 5f7695285397f46d121207120247c2ae_***_Anton Setzer |
| author |
Harry Bryant Monika Seisenberger Anton Setzer |
| author2 |
Harry Bryant Andrew Lawrence Monika Seisenberger Anton Setzer |
| format |
Conference Paper/Proceeding/Abstract |
| container_title |
RocqPL 2026 |
| institution |
Swansea University |
| publisher |
ACM |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| url |
https://popl26.sigplan.org/home/rocqpl-2026#event-overview |
| document_store_str |
0 |
| active_str |
0 |
| description |
We present a method for verifying in the theorem prover Rocq SAT proofs of railway interlockings generated by Z3 using the RUP format and Tseitin Transformations. We outline the checking procedures for RUP and the supporting Tseitin Transformation rules. This includes steps to prove their correctness and the extraction of a fully verified checker. We prove Tseitin steps correct by turning them into tautologies using a novel technique. The verification process is crucial in the context of railway interlockings, where ensuring logical soundness and a high level of safety are essential. |
| published_date |
0001-01-01T05:34:36Z |
| _version_ |
1856987072161644544 |
| score |
11.096212 |

