No Cover Image

Conference Paper/Proceeding/Abstract 139 views 26 downloads

Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts

Livio Robaldo Orcid Logo, Safia Kanwal, Hafsa Dar, Davide Liga, kuuku Anim

Proc. of 22nd International Conference on Frontiers of Information Technology (FIT'25)

Swansea University Authors: Livio Robaldo Orcid Logo, Safia Kanwal, kuuku Anim

Published in: Proc. of 22nd International Conference on Frontiers of Information Technology (FIT'25)
Published: 2025
URI: https://cronfa.swan.ac.uk/Record/cronfa70880
first_indexed 2025-11-12T16:01:31Z
last_indexed 2025-12-05T09:30:10Z
id cronfa70880
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-12-03T13:00:20.0421544</datestamp><bib-version>v2</bib-version><id>70880</id><entry>2025-11-12</entry><title>Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts</title><swanseaauthors><author><sid>b711cf9f3a7821ec52bd1e53b4f6cf9e</sid><ORCID>0000-0003-4713-8990</ORCID><firstname>Livio</firstname><surname>Robaldo</surname><name>Livio Robaldo</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c6c825948e8c21cf07dbff0709ab2ec6</sid><firstname>Safia</firstname><surname>Kanwal</surname><name>Safia Kanwal</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>bf3b60b3f57a5da2add996068307355e</sid><firstname>kuuku</firstname><surname>Anim</surname><name>kuuku Anim</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-11-12</date><deptcode>HRCL</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>Proc. of 22nd International Conference on Frontiers of Information Technology (FIT'25)</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords/><publishedDay>11</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-11-11</publishedDate><doi/><url/><notes/><college>COLLEGE NANME</college><department>Hillary Rodham Clinton Law School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>HRCL</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>Innovate UK project 10106412: "Odyssey - Opening the National Archives Legal Data to AI for Access to Justice (A2J)"</funders><projectreference/><lastEdited>2025-12-03T13:00:20.0421544</lastEdited><Created>2025-11-12T08:21:27.7613053</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">Hilary Rodham Clinton School of Law</level></path><authors><author><firstname>Livio</firstname><surname>Robaldo</surname><orcid>0000-0003-4713-8990</orcid><order>1</order></author><author><firstname>Safia</firstname><surname>Kanwal</surname><order>2</order></author><author><firstname>Hafsa</firstname><surname>Dar</surname><order>3</order></author><author><firstname>Davide</firstname><surname>Liga</surname><order>4</order></author><author><firstname>kuuku</firstname><surname>Anim</surname><order>5</order></author></authors><documents><document><filename>70880__35602__d30e1a13a07e43a390c2d1d6ffb07d8b.pdf</filename><originalFilename>paper-117.pdf</originalFilename><uploaded>2025-11-12T08:23:31.3206426</uploaded><type>Output</type><contentLength>217304</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2025-12-03T13:00:20.0421544 v2 70880 2025-11-12 Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts b711cf9f3a7821ec52bd1e53b4f6cf9e 0000-0003-4713-8990 Livio Robaldo Livio Robaldo true false c6c825948e8c21cf07dbff0709ab2ec6 Safia Kanwal Safia Kanwal true false bf3b60b3f57a5da2add996068307355e kuuku Anim kuuku Anim true false 2025-11-12 HRCL Conference Paper/Proceeding/Abstract Proc. of 22nd International Conference on Frontiers of Information Technology (FIT'25) 11 11 2025 2025-11-11 COLLEGE NANME Hillary Rodham Clinton Law School COLLEGE CODE HRCL Swansea University Not Required Innovate UK project 10106412: "Odyssey - Opening the National Archives Legal Data to AI for Access to Justice (A2J)" 2025-12-03T13:00:20.0421544 2025-11-12T08:21:27.7613053 Faculty of Humanities and Social Sciences Hilary Rodham Clinton School of Law Livio Robaldo 0000-0003-4713-8990 1 Safia Kanwal 2 Hafsa Dar 3 Davide Liga 4 kuuku Anim 5 70880__35602__d30e1a13a07e43a390c2d1d6ffb07d8b.pdf paper-117.pdf 2025-11-12T08:23:31.3206426 Output 217304 application/pdf Accepted Manuscript true false
title Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts
spellingShingle Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts
Livio Robaldo
Safia Kanwal
kuuku Anim
title_short Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts
title_full Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts
title_fullStr Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts
title_full_unstemmed Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts
title_sort Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts
author_id_str_mv b711cf9f3a7821ec52bd1e53b4f6cf9e
c6c825948e8c21cf07dbff0709ab2ec6
bf3b60b3f57a5da2add996068307355e
author_id_fullname_str_mv b711cf9f3a7821ec52bd1e53b4f6cf9e_***_Livio Robaldo
c6c825948e8c21cf07dbff0709ab2ec6_***_Safia Kanwal
bf3b60b3f57a5da2add996068307355e_***_kuuku Anim
author Livio Robaldo
Safia Kanwal
kuuku Anim
author2 Livio Robaldo
Safia Kanwal
Hafsa Dar
Davide Liga
kuuku Anim
format Conference Paper/Proceeding/Abstract
container_title Proc. of 22nd International Conference on Frontiers of Information Technology (FIT'25)
publishDate 2025
institution Swansea University
college_str Faculty of Humanities and Social Sciences
hierarchytype
hierarchy_top_id facultyofhumanitiesandsocialsciences
hierarchy_top_title Faculty of Humanities and Social Sciences
hierarchy_parent_id facultyofhumanitiesandsocialsciences
hierarchy_parent_title Faculty of Humanities and Social Sciences
department_str Hilary Rodham Clinton School of Law{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}Hilary Rodham Clinton School of Law
document_store_str 1
active_str 0
published_date 2025-11-11T12:46:18Z
_version_ 1850853639085621248
score 11.08895