Conference Paper/Proceeding/Abstract 139 views 26 downloads
Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts
Proc. of 22nd International Conference on Frontiers of Information Technology (FIT'25)
Swansea University Authors:
Livio Robaldo , Safia Kanwal, kuuku Anim
-
PDF | Accepted Manuscript
Download (212.21KB)
Abstract
Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts
| Published in: | Proc. of 22nd International Conference on Frontiers of Information Technology (FIT'25) |
|---|---|
| Published: |
2025
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa70880 |
| first_indexed |
2025-11-12T16:01:31Z |
|---|---|
| last_indexed |
2025-12-05T09:30:10Z |
| id |
cronfa70880 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-12-03T13:00:20.0421544</datestamp><bib-version>v2</bib-version><id>70880</id><entry>2025-11-12</entry><title>Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts</title><swanseaauthors><author><sid>b711cf9f3a7821ec52bd1e53b4f6cf9e</sid><ORCID>0000-0003-4713-8990</ORCID><firstname>Livio</firstname><surname>Robaldo</surname><name>Livio Robaldo</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c6c825948e8c21cf07dbff0709ab2ec6</sid><firstname>Safia</firstname><surname>Kanwal</surname><name>Safia Kanwal</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>bf3b60b3f57a5da2add996068307355e</sid><firstname>kuuku</firstname><surname>Anim</surname><name>kuuku Anim</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-11-12</date><deptcode>HRCL</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>Proc. of 22nd International Conference on Frontiers of Information Technology (FIT'25)</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords/><publishedDay>11</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-11-11</publishedDate><doi/><url/><notes/><college>COLLEGE NANME</college><department>Hillary Rodham Clinton Law School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>HRCL</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>Innovate UK project 10106412: "Odyssey - Opening the National Archives Legal Data to AI for Access to Justice (A2J)"</funders><projectreference/><lastEdited>2025-12-03T13:00:20.0421544</lastEdited><Created>2025-11-12T08:21:27.7613053</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">Hilary Rodham Clinton School of Law</level></path><authors><author><firstname>Livio</firstname><surname>Robaldo</surname><orcid>0000-0003-4713-8990</orcid><order>1</order></author><author><firstname>Safia</firstname><surname>Kanwal</surname><order>2</order></author><author><firstname>Hafsa</firstname><surname>Dar</surname><order>3</order></author><author><firstname>Davide</firstname><surname>Liga</surname><order>4</order></author><author><firstname>kuuku</firstname><surname>Anim</surname><order>5</order></author></authors><documents><document><filename>70880__35602__d30e1a13a07e43a390c2d1d6ffb07d8b.pdf</filename><originalFilename>paper-117.pdf</originalFilename><uploaded>2025-11-12T08:23:31.3206426</uploaded><type>Output</type><contentLength>217304</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-12-03T13:00:20.0421544 v2 70880 2025-11-12 Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts b711cf9f3a7821ec52bd1e53b4f6cf9e 0000-0003-4713-8990 Livio Robaldo Livio Robaldo true false c6c825948e8c21cf07dbff0709ab2ec6 Safia Kanwal Safia Kanwal true false bf3b60b3f57a5da2add996068307355e kuuku Anim kuuku Anim true false 2025-11-12 HRCL Conference Paper/Proceeding/Abstract Proc. of 22nd International Conference on Frontiers of Information Technology (FIT'25) 11 11 2025 2025-11-11 COLLEGE NANME Hillary Rodham Clinton Law School COLLEGE CODE HRCL Swansea University Not Required Innovate UK project 10106412: "Odyssey - Opening the National Archives Legal Data to AI for Access to Justice (A2J)" 2025-12-03T13:00:20.0421544 2025-11-12T08:21:27.7613053 Faculty of Humanities and Social Sciences Hilary Rodham Clinton School of Law Livio Robaldo 0000-0003-4713-8990 1 Safia Kanwal 2 Hafsa Dar 3 Davide Liga 4 kuuku Anim 5 70880__35602__d30e1a13a07e43a390c2d1d6ffb07d8b.pdf paper-117.pdf 2025-11-12T08:23:31.3206426 Output 217304 application/pdf Accepted Manuscript true false |
| title |
Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts |
| spellingShingle |
Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts Livio Robaldo Safia Kanwal kuuku Anim |
| title_short |
Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts |
| title_full |
Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts |
| title_fullStr |
Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts |
| title_full_unstemmed |
Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts |
| title_sort |
Can Large Language Models Reliably Extract Jurisdictional Variations? An Empirical Study on UK Statutory Texts |
| author_id_str_mv |
b711cf9f3a7821ec52bd1e53b4f6cf9e c6c825948e8c21cf07dbff0709ab2ec6 bf3b60b3f57a5da2add996068307355e |
| author_id_fullname_str_mv |
b711cf9f3a7821ec52bd1e53b4f6cf9e_***_Livio Robaldo c6c825948e8c21cf07dbff0709ab2ec6_***_Safia Kanwal bf3b60b3f57a5da2add996068307355e_***_kuuku Anim |
| author |
Livio Robaldo Safia Kanwal kuuku Anim |
| author2 |
Livio Robaldo Safia Kanwal Hafsa Dar Davide Liga kuuku Anim |
| format |
Conference Paper/Proceeding/Abstract |
| container_title |
Proc. of 22nd International Conference on Frontiers of Information Technology (FIT'25) |
| publishDate |
2025 |
| institution |
Swansea University |
| college_str |
Faculty of Humanities and Social Sciences |
| hierarchytype |
|
| hierarchy_top_id |
facultyofhumanitiesandsocialsciences |
| hierarchy_top_title |
Faculty of Humanities and Social Sciences |
| hierarchy_parent_id |
facultyofhumanitiesandsocialsciences |
| hierarchy_parent_title |
Faculty of Humanities and Social Sciences |
| department_str |
Hilary Rodham Clinton School of Law{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}Hilary Rodham Clinton School of Law |
| document_store_str |
1 |
| active_str |
0 |
| published_date |
2025-11-11T12:46:18Z |
| _version_ |
1850853639085621248 |
| score |
11.08895 |

