No Cover Image

Journal article 159 views 52 downloads

Patterned Assembly of Transition Metal Dichalcogenide/Graphene Heterostructures via Direct Laser Writing

Xin Chen Orcid Logo, Stefan Wolff Orcid Logo, Sofiia Zuieva, Robert Schusterbauer, Rida Shaikh, Christian E. Halbig, Anton Habel, Roland Gillen Orcid Logo, Kathrin C. Knirsch, Ievgen Donskyi, Siegfried Eigler Orcid Logo, Janina Maultzsch Orcid Logo, Andreas Hirsch Orcid Logo

Advanced Functional Materials

Swansea University Author: Roland Gillen Orcid Logo

  • 70452.VoR.pdf

    PDF | Version of Record

    © 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License.

    Download (1.91MB)

Check full text

DOI (Published version): 10.1002/adfm.202425776

Abstract

Connecting two-dimensional (2D) material layers via interface linkers represents a new avenue for fabricating 2D heterostructures. Utilizing light to remotely modulate this interface function allows for seamless assembly and patterning in a single run. Here, an efficient method for fabricating patte...

Full description

Published in: Advanced Functional Materials
ISSN: 1616-301X 1616-3028
Published: Wiley 2025
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa70452
first_indexed 2025-09-22T16:02:05Z
last_indexed 2025-10-11T04:30:26Z
id cronfa70452
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-10-10T15:01:48.3876483</datestamp><bib-version>v2</bib-version><id>70452</id><entry>2025-09-22</entry><title>Patterned Assembly of Transition Metal Dichalcogenide/Graphene Heterostructures via Direct Laser Writing</title><swanseaauthors><author><sid>8fd99815709ad1e4ae52e27f63257604</sid><ORCID>0000-0002-7913-0953</ORCID><firstname>Roland</firstname><surname>Gillen</surname><name>Roland Gillen</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-09-22</date><deptcode>ACEM</deptcode><abstract>Connecting two-dimensional (2D) material layers via interface linkers represents a new avenue for fabricating 2D heterostructures. Utilizing light to remotely modulate this interface function allows for seamless assembly and patterning in a single run. Here, an efficient method for fabricating patterned 2D heterostructures using direct laser writing is demonstrated, drawing a conceptual parallel to laser printing. In the approach, functionalized transition metal dichalcogenide (TMD) dispersions serve as inks, graphene as the substrate, and a Raman laser as the patterning tool. Unlike laser printing's electrostatic interactions, the method achieves patterned assembly through covalent bonding between TMDs and graphene. Selective Raman laser irradiation of functionalized TMD/graphene heterostructures triggers localized reactions, forming chemically modified domains exclusively in the laser-irradiated regions, as confirmed by Raman spectroscopy, Kelvin probe force microscopy (KPFM), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Experimental and theoretical analyses of the interface composition and structure provide new insights into laser-induced chemistry. The work demonstrates the potential for high-throughput assembly of customizable 2D heterostructures, with enhanced compatibility for subsequent patterning through photolabile linkers and photoinduced coupling. Additionally, the results provide deeper insights into chemistry within confined 2D spaces, offering a novel approach to nanoscale heterostructure engineering.</abstract><type>Journal Article</type><journal>Advanced Functional Materials</journal><volume>0</volume><journalNumber/><paginationStart/><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1616-301X</issnPrint><issnElectronic>1616-3028</issnElectronic><keywords>2D heterostructures; interface engineering; laser writing; patterning; transition metal dichalcogenides</keywords><publishedDay>13</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-05-13</publishedDate><doi>10.1002/adfm.202425776</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>Freie Universit&#xE4;t Berlin. Grant Number: SupraFAB Funding; Deutsche Forschungsgemeinschaft. Grant Number: 440719683; European Union's Horizon 2020 research and innovation programme Graphene Flagship. Grant Number: 881603; Emerging Talents Initiative (FAUeti) funded by Friedrich-Alexander-Universit&#xE4;t Erlangen-N&#xFC;rnberg (FAU)</funders><projectreference/><lastEdited>2025-10-10T15:01:48.3876483</lastEdited><Created>2025-09-22T12:45:11.4206137</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>Xin</firstname><surname>Chen</surname><orcid>0000-0003-3031-533x</orcid><order>1</order></author><author><firstname>Stefan</firstname><surname>Wolff</surname><orcid>0000-0002-4755-1729</orcid><order>2</order></author><author><firstname>Sofiia</firstname><surname>Zuieva</surname><order>3</order></author><author><firstname>Robert</firstname><surname>Schusterbauer</surname><order>4</order></author><author><firstname>Rida</firstname><surname>Shaikh</surname><order>5</order></author><author><firstname>Christian E.</firstname><surname>Halbig</surname><order>6</order></author><author><firstname>Anton</firstname><surname>Habel</surname><order>7</order></author><author><firstname>Roland</firstname><surname>Gillen</surname><orcid>0000-0002-7913-0953</orcid><order>8</order></author><author><firstname>Kathrin C.</firstname><surname>Knirsch</surname><order>9</order></author><author><firstname>Ievgen</firstname><surname>Donskyi</surname><order>10</order></author><author><firstname>Siegfried</firstname><surname>Eigler</surname><orcid>0000-0002-0536-8256</orcid><order>11</order></author><author><firstname>Janina</firstname><surname>Maultzsch</surname><orcid>0000-0002-6088-2442</orcid><order>12</order></author><author><firstname>Andreas</firstname><surname>Hirsch</surname><orcid>0000-0003-1458-8872</orcid><order>13</order></author></authors><documents><document><filename>70452__35311__e05a760675d147c1a895c8769ead9a89.pdf</filename><originalFilename>70452.VoR.pdf</originalFilename><uploaded>2025-10-10T14:55:15.3593691</uploaded><type>Output</type><contentLength>2004538</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2025-10-10T15:01:48.3876483 v2 70452 2025-09-22 Patterned Assembly of Transition Metal Dichalcogenide/Graphene Heterostructures via Direct Laser Writing 8fd99815709ad1e4ae52e27f63257604 0000-0002-7913-0953 Roland Gillen Roland Gillen true false 2025-09-22 ACEM Connecting two-dimensional (2D) material layers via interface linkers represents a new avenue for fabricating 2D heterostructures. Utilizing light to remotely modulate this interface function allows for seamless assembly and patterning in a single run. Here, an efficient method for fabricating patterned 2D heterostructures using direct laser writing is demonstrated, drawing a conceptual parallel to laser printing. In the approach, functionalized transition metal dichalcogenide (TMD) dispersions serve as inks, graphene as the substrate, and a Raman laser as the patterning tool. Unlike laser printing's electrostatic interactions, the method achieves patterned assembly through covalent bonding between TMDs and graphene. Selective Raman laser irradiation of functionalized TMD/graphene heterostructures triggers localized reactions, forming chemically modified domains exclusively in the laser-irradiated regions, as confirmed by Raman spectroscopy, Kelvin probe force microscopy (KPFM), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Experimental and theoretical analyses of the interface composition and structure provide new insights into laser-induced chemistry. The work demonstrates the potential for high-throughput assembly of customizable 2D heterostructures, with enhanced compatibility for subsequent patterning through photolabile linkers and photoinduced coupling. Additionally, the results provide deeper insights into chemistry within confined 2D spaces, offering a novel approach to nanoscale heterostructure engineering. Journal Article Advanced Functional Materials 0 Wiley 1616-301X 1616-3028 2D heterostructures; interface engineering; laser writing; patterning; transition metal dichalcogenides 13 5 2025 2025-05-13 10.1002/adfm.202425776 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University Another institution paid the OA fee Freie Universität Berlin. Grant Number: SupraFAB Funding; Deutsche Forschungsgemeinschaft. Grant Number: 440719683; European Union's Horizon 2020 research and innovation programme Graphene Flagship. Grant Number: 881603; Emerging Talents Initiative (FAUeti) funded by Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) 2025-10-10T15:01:48.3876483 2025-09-22T12:45:11.4206137 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering Xin Chen 0000-0003-3031-533x 1 Stefan Wolff 0000-0002-4755-1729 2 Sofiia Zuieva 3 Robert Schusterbauer 4 Rida Shaikh 5 Christian E. Halbig 6 Anton Habel 7 Roland Gillen 0000-0002-7913-0953 8 Kathrin C. Knirsch 9 Ievgen Donskyi 10 Siegfried Eigler 0000-0002-0536-8256 11 Janina Maultzsch 0000-0002-6088-2442 12 Andreas Hirsch 0000-0003-1458-8872 13 70452__35311__e05a760675d147c1a895c8769ead9a89.pdf 70452.VoR.pdf 2025-10-10T14:55:15.3593691 Output 2004538 application/pdf Version of Record true © 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License. true eng http://creativecommons.org/licenses/by/4.0/
title Patterned Assembly of Transition Metal Dichalcogenide/Graphene Heterostructures via Direct Laser Writing
spellingShingle Patterned Assembly of Transition Metal Dichalcogenide/Graphene Heterostructures via Direct Laser Writing
Roland Gillen
title_short Patterned Assembly of Transition Metal Dichalcogenide/Graphene Heterostructures via Direct Laser Writing
title_full Patterned Assembly of Transition Metal Dichalcogenide/Graphene Heterostructures via Direct Laser Writing
title_fullStr Patterned Assembly of Transition Metal Dichalcogenide/Graphene Heterostructures via Direct Laser Writing
title_full_unstemmed Patterned Assembly of Transition Metal Dichalcogenide/Graphene Heterostructures via Direct Laser Writing
title_sort Patterned Assembly of Transition Metal Dichalcogenide/Graphene Heterostructures via Direct Laser Writing
author_id_str_mv 8fd99815709ad1e4ae52e27f63257604
author_id_fullname_str_mv 8fd99815709ad1e4ae52e27f63257604_***_Roland Gillen
author Roland Gillen
author2 Xin Chen
Stefan Wolff
Sofiia Zuieva
Robert Schusterbauer
Rida Shaikh
Christian E. Halbig
Anton Habel
Roland Gillen
Kathrin C. Knirsch
Ievgen Donskyi
Siegfried Eigler
Janina Maultzsch
Andreas Hirsch
format Journal article
container_title Advanced Functional Materials
container_volume 0
publishDate 2025
institution Swansea University
issn 1616-301X
1616-3028
doi_str_mv 10.1002/adfm.202425776
publisher Wiley
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering
document_store_str 1
active_str 0
description Connecting two-dimensional (2D) material layers via interface linkers represents a new avenue for fabricating 2D heterostructures. Utilizing light to remotely modulate this interface function allows for seamless assembly and patterning in a single run. Here, an efficient method for fabricating patterned 2D heterostructures using direct laser writing is demonstrated, drawing a conceptual parallel to laser printing. In the approach, functionalized transition metal dichalcogenide (TMD) dispersions serve as inks, graphene as the substrate, and a Raman laser as the patterning tool. Unlike laser printing's electrostatic interactions, the method achieves patterned assembly through covalent bonding between TMDs and graphene. Selective Raman laser irradiation of functionalized TMD/graphene heterostructures triggers localized reactions, forming chemically modified domains exclusively in the laser-irradiated regions, as confirmed by Raman spectroscopy, Kelvin probe force microscopy (KPFM), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Experimental and theoretical analyses of the interface composition and structure provide new insights into laser-induced chemistry. The work demonstrates the potential for high-throughput assembly of customizable 2D heterostructures, with enhanced compatibility for subsequent patterning through photolabile linkers and photoinduced coupling. Additionally, the results provide deeper insights into chemistry within confined 2D spaces, offering a novel approach to nanoscale heterostructure engineering.
published_date 2025-05-13T05:30:55Z
_version_ 1851098037714157568
score 11.089407