Journal article 119 views 26 downloads
Noncommutative fibre bundles via bimodules
Journal of Pure and Applied Algebra, Volume: 229, Issue: 11, Start page: 108088
Swansea University Authors:
Edwin Beggs , JAMES BLAKE
-
PDF | Version of Record
© 2025 The Author(s). This is an open access article under the CC BY license.
Download (1.1MB)
DOI (Published version): 10.1016/j.jpaa.2025.108088
Abstract
We construct a Leray-Serre spectral sequence for fibre bundles for de Rham sheaf cohomology on noncommutative algebras. The morphisms are bimodules with zero-curvature extendable bimodule connections. This generalises definitions involving differentiable algebra maps to differentiable completely pos...
| Published in: | Journal of Pure and Applied Algebra |
|---|---|
| ISSN: | 0022-4049 1873-1376 |
| Published: |
Elsevier BV
2025
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa70347 |
| first_indexed |
2025-09-15T08:45:56Z |
|---|---|
| last_indexed |
2025-10-03T05:58:00Z |
| id |
cronfa70347 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-10-02T14:49:28.8297137</datestamp><bib-version>v2</bib-version><id>70347</id><entry>2025-09-15</entry><title>Noncommutative fibre bundles via bimodules</title><swanseaauthors><author><sid>a0062e7cf6d68f05151560cdf9d14e75</sid><ORCID>0000-0002-3139-0983</ORCID><firstname>Edwin</firstname><surname>Beggs</surname><name>Edwin Beggs</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a3cb2c3bf371160e63e9466f2dd721b5</sid><firstname>JAMES</firstname><surname>BLAKE</surname><name>JAMES BLAKE</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-09-15</date><deptcode>MACS</deptcode><abstract>We construct a Leray-Serre spectral sequence for fibre bundles for de Rham sheaf cohomology on noncommutative algebras. The morphisms are bimodules with zero-curvature extendable bimodule connections. This generalises definitions involving differentiable algebra maps to differentiable completely positive maps by using the KSGNS construction and Hilbert C∗-bimodules with bimodule connections. We give examples of noncommutative fibre bundles, involving group algebras, matrix algebras, and the quantum torus.</abstract><type>Journal Article</type><journal>Journal of Pure and Applied Algebra</journal><volume>229</volume><journalNumber>11</journalNumber><paginationStart>108088</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0022-4049</issnPrint><issnElectronic>1873-1376</issnElectronic><keywords>Noncommutative differential geometry; Fibre bundles; Spectral sequences; Cohomology; Bimodules</keywords><publishedDay>1</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-11-01</publishedDate><doi>10.1016/j.jpaa.2025.108088</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>The second author acknowledges the support of the UK's EPSRC grant Maths DTP 2020 Swansea University, Grant Ref: EP/V519996/1.</funders><projectreference/><lastEdited>2025-10-02T14:49:28.8297137</lastEdited><Created>2025-09-15T09:39:16.6573850</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Edwin</firstname><surname>Beggs</surname><orcid>0000-0002-3139-0983</orcid><order>1</order></author><author><firstname>JAMES</firstname><surname>BLAKE</surname><order>2</order></author></authors><documents><document><filename>70347__35229__b8ed587df60f460aaba47d67fef98ba0.pdf</filename><originalFilename>70347.VoR.pdf</originalFilename><uploaded>2025-10-02T14:44:23.2511291</uploaded><type>Output</type><contentLength>1158636</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2025 The Author(s). This is an open access article under the CC BY license.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-10-02T14:49:28.8297137 v2 70347 2025-09-15 Noncommutative fibre bundles via bimodules a0062e7cf6d68f05151560cdf9d14e75 0000-0002-3139-0983 Edwin Beggs Edwin Beggs true false a3cb2c3bf371160e63e9466f2dd721b5 JAMES BLAKE JAMES BLAKE true false 2025-09-15 MACS We construct a Leray-Serre spectral sequence for fibre bundles for de Rham sheaf cohomology on noncommutative algebras. The morphisms are bimodules with zero-curvature extendable bimodule connections. This generalises definitions involving differentiable algebra maps to differentiable completely positive maps by using the KSGNS construction and Hilbert C∗-bimodules with bimodule connections. We give examples of noncommutative fibre bundles, involving group algebras, matrix algebras, and the quantum torus. Journal Article Journal of Pure and Applied Algebra 229 11 108088 Elsevier BV 0022-4049 1873-1376 Noncommutative differential geometry; Fibre bundles; Spectral sequences; Cohomology; Bimodules 1 11 2025 2025-11-01 10.1016/j.jpaa.2025.108088 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University SU Library paid the OA fee (TA Institutional Deal) The second author acknowledges the support of the UK's EPSRC grant Maths DTP 2020 Swansea University, Grant Ref: EP/V519996/1. 2025-10-02T14:49:28.8297137 2025-09-15T09:39:16.6573850 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Edwin Beggs 0000-0002-3139-0983 1 JAMES BLAKE 2 70347__35229__b8ed587df60f460aaba47d67fef98ba0.pdf 70347.VoR.pdf 2025-10-02T14:44:23.2511291 Output 1158636 application/pdf Version of Record true © 2025 The Author(s). This is an open access article under the CC BY license. true eng http://creativecommons.org/licenses/by/4.0/ |
| title |
Noncommutative fibre bundles via bimodules |
| spellingShingle |
Noncommutative fibre bundles via bimodules Edwin Beggs JAMES BLAKE |
| title_short |
Noncommutative fibre bundles via bimodules |
| title_full |
Noncommutative fibre bundles via bimodules |
| title_fullStr |
Noncommutative fibre bundles via bimodules |
| title_full_unstemmed |
Noncommutative fibre bundles via bimodules |
| title_sort |
Noncommutative fibre bundles via bimodules |
| author_id_str_mv |
a0062e7cf6d68f05151560cdf9d14e75 a3cb2c3bf371160e63e9466f2dd721b5 |
| author_id_fullname_str_mv |
a0062e7cf6d68f05151560cdf9d14e75_***_Edwin Beggs a3cb2c3bf371160e63e9466f2dd721b5_***_JAMES BLAKE |
| author |
Edwin Beggs JAMES BLAKE |
| author2 |
Edwin Beggs JAMES BLAKE |
| format |
Journal article |
| container_title |
Journal of Pure and Applied Algebra |
| container_volume |
229 |
| container_issue |
11 |
| container_start_page |
108088 |
| publishDate |
2025 |
| institution |
Swansea University |
| issn |
0022-4049 1873-1376 |
| doi_str_mv |
10.1016/j.jpaa.2025.108088 |
| publisher |
Elsevier BV |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
| document_store_str |
1 |
| active_str |
0 |
| description |
We construct a Leray-Serre spectral sequence for fibre bundles for de Rham sheaf cohomology on noncommutative algebras. The morphisms are bimodules with zero-curvature extendable bimodule connections. This generalises definitions involving differentiable algebra maps to differentiable completely positive maps by using the KSGNS construction and Hilbert C∗-bimodules with bimodule connections. We give examples of noncommutative fibre bundles, involving group algebras, matrix algebras, and the quantum torus. |
| published_date |
2025-11-01T08:25:56Z |
| _version_ |
1848300544866648064 |
| score |
11.085163 |

