Journal article 1699 views
Bayesian nonparametric quantile regression using splines
Computational Statistics and Data Analysis, Volume: 54, Issue: 4, Pages: 1138 - 1150
Swansea University Authors: Yuzhi Cai , Dominic Reeve
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1016/j.csda.2009.09.004
Abstract
A new technique based on Bayesian quantile regression that models the dependence of a quantile of one variable on the values of another using a natural cubic spline is presented. Inference is based on the posterior density of the spline and an associated smoothing parameter and is performed by means...
Published in: | Computational Statistics and Data Analysis |
---|---|
ISSN: | 0167-9473 |
Published: |
Elsevier
2010
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa7005 |
first_indexed |
2013-07-23T11:57:02Z |
---|---|
last_indexed |
2018-02-09T04:34:43Z |
id |
cronfa7005 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2016-08-01T10:46:29.1311988</datestamp><bib-version>v2</bib-version><id>7005</id><entry>2012-02-01</entry><title>Bayesian nonparametric quantile regression using splines</title><swanseaauthors><author><sid>eff7b8626ab4cc6428eef52516fda7d6</sid><ORCID>0000-0003-3509-9787</ORCID><firstname>Yuzhi</firstname><surname>Cai</surname><name>Yuzhi Cai</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>3e76fcc2bb3cde4ddee2c8edfd2f0082</sid><ORCID>0000-0003-1293-4743</ORCID><firstname>Dominic</firstname><surname>Reeve</surname><name>Dominic Reeve</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2012-02-01</date><deptcode>CBAE</deptcode><abstract>A new technique based on Bayesian quantile regression that models the dependence of a quantile of one variable on the values of another using a natural cubic spline is presented. Inference is based on the posterior density of the spline and an associated smoothing parameter and is performed by means of a Markov chain Monte Carlo algorithm. Examples of the application of the new technique to two real environmental data sets and to simulated data for which polynomial modelling is inappropriate are given. An aid for making a good choice of proposal density in the MetropolisHastings algorithm is discussed. The new nonparametric methodology provides more flexible modelling than the currently used Bayesian parametric quantile regression approach.</abstract><type>Journal Article</type><journal>Computational Statistics and Data Analysis</journal><volume>54</volume><journalNumber>4</journalNumber><paginationStart>1138</paginationStart><paginationEnd>1150</paginationEnd><publisher>Elsevier</publisher><issnPrint>0167-9473</issnPrint><keywords>non-parametric method, quantile regression, natural cubic splines, Bayesian method</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2010</publishedYear><publishedDate>2010-12-31</publishedDate><doi>10.1016/j.csda.2009.09.004</doi><url/><notes/><college>COLLEGE NANME</college><department>Management School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CBAE</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2016-08-01T10:46:29.1311988</lastEdited><Created>2012-02-01T09:44:48.9770000</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">School of Management - Accounting and Finance</level></path><authors><author><firstname>Paul</firstname><surname>Thompson</surname><order>1</order></author><author><firstname>Yuzhi</firstname><surname>Cai</surname><orcid>0000-0003-3509-9787</orcid><order>2</order></author><author><firstname>Rana</firstname><surname>Moyeed</surname><order>3</order></author><author><firstname>Dominic</firstname><surname>Reeve</surname><orcid>0000-0003-1293-4743</orcid><order>4</order></author><author><firstname>Julian</firstname><surname>Stander</surname><order>5</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2016-08-01T10:46:29.1311988 v2 7005 2012-02-01 Bayesian nonparametric quantile regression using splines eff7b8626ab4cc6428eef52516fda7d6 0000-0003-3509-9787 Yuzhi Cai Yuzhi Cai true false 3e76fcc2bb3cde4ddee2c8edfd2f0082 0000-0003-1293-4743 Dominic Reeve Dominic Reeve true false 2012-02-01 CBAE A new technique based on Bayesian quantile regression that models the dependence of a quantile of one variable on the values of another using a natural cubic spline is presented. Inference is based on the posterior density of the spline and an associated smoothing parameter and is performed by means of a Markov chain Monte Carlo algorithm. Examples of the application of the new technique to two real environmental data sets and to simulated data for which polynomial modelling is inappropriate are given. An aid for making a good choice of proposal density in the MetropolisHastings algorithm is discussed. The new nonparametric methodology provides more flexible modelling than the currently used Bayesian parametric quantile regression approach. Journal Article Computational Statistics and Data Analysis 54 4 1138 1150 Elsevier 0167-9473 non-parametric method, quantile regression, natural cubic splines, Bayesian method 31 12 2010 2010-12-31 10.1016/j.csda.2009.09.004 COLLEGE NANME Management School COLLEGE CODE CBAE Swansea University 2016-08-01T10:46:29.1311988 2012-02-01T09:44:48.9770000 Faculty of Humanities and Social Sciences School of Management - Accounting and Finance Paul Thompson 1 Yuzhi Cai 0000-0003-3509-9787 2 Rana Moyeed 3 Dominic Reeve 0000-0003-1293-4743 4 Julian Stander 5 |
title |
Bayesian nonparametric quantile regression using splines |
spellingShingle |
Bayesian nonparametric quantile regression using splines Yuzhi Cai Dominic Reeve |
title_short |
Bayesian nonparametric quantile regression using splines |
title_full |
Bayesian nonparametric quantile regression using splines |
title_fullStr |
Bayesian nonparametric quantile regression using splines |
title_full_unstemmed |
Bayesian nonparametric quantile regression using splines |
title_sort |
Bayesian nonparametric quantile regression using splines |
author_id_str_mv |
eff7b8626ab4cc6428eef52516fda7d6 3e76fcc2bb3cde4ddee2c8edfd2f0082 |
author_id_fullname_str_mv |
eff7b8626ab4cc6428eef52516fda7d6_***_Yuzhi Cai 3e76fcc2bb3cde4ddee2c8edfd2f0082_***_Dominic Reeve |
author |
Yuzhi Cai Dominic Reeve |
author2 |
Paul Thompson Yuzhi Cai Rana Moyeed Dominic Reeve Julian Stander |
format |
Journal article |
container_title |
Computational Statistics and Data Analysis |
container_volume |
54 |
container_issue |
4 |
container_start_page |
1138 |
publishDate |
2010 |
institution |
Swansea University |
issn |
0167-9473 |
doi_str_mv |
10.1016/j.csda.2009.09.004 |
publisher |
Elsevier |
college_str |
Faculty of Humanities and Social Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofhumanitiesandsocialsciences |
hierarchy_top_title |
Faculty of Humanities and Social Sciences |
hierarchy_parent_id |
facultyofhumanitiesandsocialsciences |
hierarchy_parent_title |
Faculty of Humanities and Social Sciences |
department_str |
School of Management - Accounting and Finance{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}School of Management - Accounting and Finance |
document_store_str |
0 |
active_str |
0 |
description |
A new technique based on Bayesian quantile regression that models the dependence of a quantile of one variable on the values of another using a natural cubic spline is presented. Inference is based on the posterior density of the spline and an associated smoothing parameter and is performed by means of a Markov chain Monte Carlo algorithm. Examples of the application of the new technique to two real environmental data sets and to simulated data for which polynomial modelling is inappropriate are given. An aid for making a good choice of proposal density in the MetropolisHastings algorithm is discussed. The new nonparametric methodology provides more flexible modelling than the currently used Bayesian parametric quantile regression approach. |
published_date |
2010-12-31T18:13:52Z |
_version_ |
1821339635878461440 |
score |
11.04748 |