Journal article 382 views 139 downloads
Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data
Lecture Notes in Computer Science, Volume: 15656, Pages: 302 - 314
Swansea University Authors:
ALEXANDER MILNE, Xianghua Xie , Gary Tam
-
PDF | Accepted Manuscript
Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).
Download (1.32MB)
DOI (Published version): 10.1007/978-3-032-07343-3_24
Abstract
Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data
| Published in: | Lecture Notes in Computer Science |
|---|---|
| ISBN: | 9783032073426 9783032073433 |
| ISSN: | 0302-9743 1611-3349 |
| Published: |
Cham
Springer Nature Switzerland
2026
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa69563 |
| first_indexed |
2025-05-23T12:21:22Z |
|---|---|
| last_indexed |
2026-01-08T05:18:13Z |
| id |
cronfa69563 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2026-01-07T15:39:33.4046231</datestamp><bib-version>v2</bib-version><id>69563</id><entry>2025-05-23</entry><title>Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data</title><swanseaauthors><author><sid>c6da9da5c99754b6850e882895b86ca5</sid><firstname>ALEXANDER</firstname><surname>MILNE</surname><name>ALEXANDER MILNE</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e75a68e11a20e5f1da94ee6e28ff5e76</sid><ORCID>0000-0001-7387-5180</ORCID><firstname>Gary</firstname><surname>Tam</surname><name>Gary Tam</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-05-23</date><abstract/><type>Journal Article</type><journal>Lecture Notes in Computer Science</journal><volume>15656</volume><journalNumber/><paginationStart>302</paginationStart><paginationEnd>314</paginationEnd><publisher>Springer Nature Switzerland</publisher><placeOfPublication>Cham</placeOfPublication><isbnPrint>9783032073426</isbnPrint><isbnElectronic>9783032073433</isbnElectronic><issnPrint>0302-9743</issnPrint><issnElectronic>1611-3349</issnElectronic><keywords>Representation learning; High-aspect-ratio images; Pretext task; Contrastive learning; Autoencoder</keywords><publishedDay>2</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2026</publishedYear><publishedDate>2026-01-02</publishedDate><doi>10.1007/978-3-032-07343-3_24</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>This work was funded by EPSRC Industrial Case award (EP/V519601/1). For the purpose of open access the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission.</funders><projectreference/><lastEdited>2026-01-07T15:39:33.4046231</lastEdited><Created>2025-05-23T13:18:00.5793451</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>ALEXANDER</firstname><surname>MILNE</surname><order>1</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>2</order></author><author><firstname>Gary</firstname><surname>Tam</surname><orcid>0000-0001-7387-5180</orcid><order>3</order></author></authors><documents><document><filename>69563__34344__7ad48e9ce5d34eb680ea5d9a9f3adbbd.pdf</filename><originalFilename>case_study_pretraining_tata_data_acivs2025.pdf</originalFilename><uploaded>2025-05-23T13:20:58.5179403</uploaded><type>Output</type><contentLength>1384616</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2026-01-07T15:39:33.4046231 v2 69563 2025-05-23 Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data c6da9da5c99754b6850e882895b86ca5 ALEXANDER MILNE ALEXANDER MILNE true false b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false e75a68e11a20e5f1da94ee6e28ff5e76 0000-0001-7387-5180 Gary Tam Gary Tam true false 2025-05-23 Journal Article Lecture Notes in Computer Science 15656 302 314 Springer Nature Switzerland Cham 9783032073426 9783032073433 0302-9743 1611-3349 Representation learning; High-aspect-ratio images; Pretext task; Contrastive learning; Autoencoder 2 1 2026 2026-01-02 10.1007/978-3-032-07343-3_24 COLLEGE NANME COLLEGE CODE Swansea University Not Required This work was funded by EPSRC Industrial Case award (EP/V519601/1). For the purpose of open access the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission. 2026-01-07T15:39:33.4046231 2025-05-23T13:18:00.5793451 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science ALEXANDER MILNE 1 Xianghua Xie 0000-0002-2701-8660 2 Gary Tam 0000-0001-7387-5180 3 69563__34344__7ad48e9ce5d34eb680ea5d9a9f3adbbd.pdf case_study_pretraining_tata_data_acivs2025.pdf 2025-05-23T13:20:58.5179403 Output 1384616 application/pdf Accepted Manuscript true Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention). true eng https://creativecommons.org/licenses/by/4.0/deed.en |
| title |
Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data |
| spellingShingle |
Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data ALEXANDER MILNE Xianghua Xie Gary Tam |
| title_short |
Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data |
| title_full |
Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data |
| title_fullStr |
Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data |
| title_full_unstemmed |
Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data |
| title_sort |
Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data |
| author_id_str_mv |
c6da9da5c99754b6850e882895b86ca5 b334d40963c7a2f435f06d2c26c74e11 e75a68e11a20e5f1da94ee6e28ff5e76 |
| author_id_fullname_str_mv |
c6da9da5c99754b6850e882895b86ca5_***_ALEXANDER MILNE b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie e75a68e11a20e5f1da94ee6e28ff5e76_***_Gary Tam |
| author |
ALEXANDER MILNE Xianghua Xie Gary Tam |
| author2 |
ALEXANDER MILNE Xianghua Xie Gary Tam |
| format |
Journal article |
| container_title |
Lecture Notes in Computer Science |
| container_volume |
15656 |
| container_start_page |
302 |
| publishDate |
2026 |
| institution |
Swansea University |
| isbn |
9783032073426 9783032073433 |
| issn |
0302-9743 1611-3349 |
| doi_str_mv |
10.1007/978-3-032-07343-3_24 |
| publisher |
Springer Nature Switzerland |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| document_store_str |
1 |
| active_str |
0 |
| published_date |
2026-01-02T05:29:59Z |
| _version_ |
1856986781713432576 |
| score |
11.096068 |

