No Cover Image

Journal article 382 views 139 downloads

Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data

ALEXANDER MILNE, Xianghua Xie Orcid Logo, Gary Tam Orcid Logo

Lecture Notes in Computer Science, Volume: 15656, Pages: 302 - 314

Swansea University Authors: ALEXANDER MILNE, Xianghua Xie Orcid Logo, Gary Tam Orcid Logo

  • case_study_pretraining_tata_data_acivs2025.pdf

    PDF | Accepted Manuscript

    Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).

    Download (1.32MB)
Published in: Lecture Notes in Computer Science
ISBN: 9783032073426 9783032073433
ISSN: 0302-9743 1611-3349
Published: Cham Springer Nature Switzerland 2026
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa69563
first_indexed 2025-05-23T12:21:22Z
last_indexed 2026-01-08T05:18:13Z
id cronfa69563
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2026-01-07T15:39:33.4046231</datestamp><bib-version>v2</bib-version><id>69563</id><entry>2025-05-23</entry><title>Pretraining Techniques for&#xA0;Steel Surface Roughness Prediction with&#xA0;Long Thin Spatial Industrial Data</title><swanseaauthors><author><sid>c6da9da5c99754b6850e882895b86ca5</sid><firstname>ALEXANDER</firstname><surname>MILNE</surname><name>ALEXANDER MILNE</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e75a68e11a20e5f1da94ee6e28ff5e76</sid><ORCID>0000-0001-7387-5180</ORCID><firstname>Gary</firstname><surname>Tam</surname><name>Gary Tam</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-05-23</date><abstract/><type>Journal Article</type><journal>Lecture Notes in Computer Science</journal><volume>15656</volume><journalNumber/><paginationStart>302</paginationStart><paginationEnd>314</paginationEnd><publisher>Springer Nature Switzerland</publisher><placeOfPublication>Cham</placeOfPublication><isbnPrint>9783032073426</isbnPrint><isbnElectronic>9783032073433</isbnElectronic><issnPrint>0302-9743</issnPrint><issnElectronic>1611-3349</issnElectronic><keywords>Representation learning; High-aspect-ratio images; Pretext task; Contrastive learning; Autoencoder</keywords><publishedDay>2</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2026</publishedYear><publishedDate>2026-01-02</publishedDate><doi>10.1007/978-3-032-07343-3_24</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>This work was funded by EPSRC Industrial Case award (EP/V519601/1). For the purpose of open access the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission.</funders><projectreference/><lastEdited>2026-01-07T15:39:33.4046231</lastEdited><Created>2025-05-23T13:18:00.5793451</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>ALEXANDER</firstname><surname>MILNE</surname><order>1</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>2</order></author><author><firstname>Gary</firstname><surname>Tam</surname><orcid>0000-0001-7387-5180</orcid><order>3</order></author></authors><documents><document><filename>69563__34344__7ad48e9ce5d34eb680ea5d9a9f3adbbd.pdf</filename><originalFilename>case_study_pretraining_tata_data_acivs2025.pdf</originalFilename><uploaded>2025-05-23T13:20:58.5179403</uploaded><type>Output</type><contentLength>1384616</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807>
spelling 2026-01-07T15:39:33.4046231 v2 69563 2025-05-23 Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data c6da9da5c99754b6850e882895b86ca5 ALEXANDER MILNE ALEXANDER MILNE true false b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false e75a68e11a20e5f1da94ee6e28ff5e76 0000-0001-7387-5180 Gary Tam Gary Tam true false 2025-05-23 Journal Article Lecture Notes in Computer Science 15656 302 314 Springer Nature Switzerland Cham 9783032073426 9783032073433 0302-9743 1611-3349 Representation learning; High-aspect-ratio images; Pretext task; Contrastive learning; Autoencoder 2 1 2026 2026-01-02 10.1007/978-3-032-07343-3_24 COLLEGE NANME COLLEGE CODE Swansea University Not Required This work was funded by EPSRC Industrial Case award (EP/V519601/1). For the purpose of open access the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission. 2026-01-07T15:39:33.4046231 2025-05-23T13:18:00.5793451 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science ALEXANDER MILNE 1 Xianghua Xie 0000-0002-2701-8660 2 Gary Tam 0000-0001-7387-5180 3 69563__34344__7ad48e9ce5d34eb680ea5d9a9f3adbbd.pdf case_study_pretraining_tata_data_acivs2025.pdf 2025-05-23T13:20:58.5179403 Output 1384616 application/pdf Accepted Manuscript true Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention). true eng https://creativecommons.org/licenses/by/4.0/deed.en
title Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data
spellingShingle Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data
ALEXANDER MILNE
Xianghua Xie
Gary Tam
title_short Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data
title_full Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data
title_fullStr Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data
title_full_unstemmed Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data
title_sort Pretraining Techniques for Steel Surface Roughness Prediction with Long Thin Spatial Industrial Data
author_id_str_mv c6da9da5c99754b6850e882895b86ca5
b334d40963c7a2f435f06d2c26c74e11
e75a68e11a20e5f1da94ee6e28ff5e76
author_id_fullname_str_mv c6da9da5c99754b6850e882895b86ca5_***_ALEXANDER MILNE
b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie
e75a68e11a20e5f1da94ee6e28ff5e76_***_Gary Tam
author ALEXANDER MILNE
Xianghua Xie
Gary Tam
author2 ALEXANDER MILNE
Xianghua Xie
Gary Tam
format Journal article
container_title Lecture Notes in Computer Science
container_volume 15656
container_start_page 302
publishDate 2026
institution Swansea University
isbn 9783032073426
9783032073433
issn 0302-9743
1611-3349
doi_str_mv 10.1007/978-3-032-07343-3_24
publisher Springer Nature Switzerland
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 1
active_str 0
published_date 2026-01-02T05:29:59Z
_version_ 1856986781713432576
score 11.096068