Journal article 465 views 104 downloads
Validating DSGE Models Through SVARs Under Imperfect Information
Oxford Bulletin of Economics and Statistics
Swansea University Author:
Bo Yang
-
PDF | Version of Record
© 2025 The Author(s). Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (CC BY).
Download (1.21MB)
DOI (Published version): 10.1111/obes.12683
Abstract
We study the ability of SVARs to match impulse responses of a well-established DSGE model where the information of agents can be imperfect. We derive conditions for the solution of a linearized NK-DSGE model to be invertible given this information set. In the absence of invertibility, an approximate...
| Published in: | Oxford Bulletin of Economics and Statistics |
|---|---|
| ISSN: | 0305-9049 1468-0084 |
| Published: |
Wiley
2025
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa69292 |
| first_indexed |
2025-04-15T08:18:21Z |
|---|---|
| last_indexed |
2025-10-17T09:18:45Z |
| id |
cronfa69292 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-10-16T15:25:11.4870968</datestamp><bib-version>v2</bib-version><id>69292</id><entry>2025-04-15</entry><title>Validating DSGE Models Through SVARs Under Imperfect Information</title><swanseaauthors><author><sid>d8e17e56a3b9484ba22c3d43807c83bd</sid><ORCID>0000-0001-5834-6002</ORCID><firstname>Bo</firstname><surname>Yang</surname><name>Bo Yang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-04-15</date><deptcode>SOSS</deptcode><abstract>We study the ability of SVARs to match impulse responses of a well-established DSGE model where the information of agents can be imperfect. We derive conditions for the solution of a linearized NK-DSGE model to be invertible given this information set. In the absence of invertibility, an approximate measure is constructed. An SVAR is estimated using artificial data generated from the model and three forms of identification restrictions: zero, sign and bounds on the forecast error variance. We demonstrate that a VAR may not recover a subset of structural shocks when imperfect information causes the underlying model to be non-invertible.</abstract><type>Journal Article</type><journal>Oxford Bulletin of Economics and Statistics</journal><volume>0</volume><journalNumber/><paginationStart/><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0305-9049</issnPrint><issnElectronic>1468-0084</issnElectronic><keywords>imperfect information, impulse responses, invertibility-fundamentalness, SVAR-DSGE comparisons, validation of DSGE models</keywords><publishedDay>25</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-04-25</publishedDate><doi>10.1111/obes.12683</doi><url/><notes/><college>COLLEGE NANME</college><department>Social Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SOSS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>Swansea University</funders><projectreference/><lastEdited>2025-10-16T15:25:11.4870968</lastEdited><Created>2025-04-15T09:14:58.8504116</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">School of Social Sciences - Economics</level></path><authors><author><firstname>Paul</firstname><surname>Levine</surname><order>1</order></author><author><firstname>Joseph</firstname><surname>Pearlman</surname><order>2</order></author><author><firstname>Alessio</firstname><surname>Volpicella</surname><order>3</order></author><author><firstname>Bo</firstname><surname>Yang</surname><orcid>0000-0001-5834-6002</orcid><order>4</order></author></authors><documents><document><filename>69292__34135__9b3a85a521a74f0aa76b815591396902.pdf</filename><originalFilename>69292.VOR.pdf</originalFilename><uploaded>2025-04-29T13:25:37.3415991</uploaded><type>Output</type><contentLength>1263722</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2025 The Author(s). Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (CC BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-10-16T15:25:11.4870968 v2 69292 2025-04-15 Validating DSGE Models Through SVARs Under Imperfect Information d8e17e56a3b9484ba22c3d43807c83bd 0000-0001-5834-6002 Bo Yang Bo Yang true false 2025-04-15 SOSS We study the ability of SVARs to match impulse responses of a well-established DSGE model where the information of agents can be imperfect. We derive conditions for the solution of a linearized NK-DSGE model to be invertible given this information set. In the absence of invertibility, an approximate measure is constructed. An SVAR is estimated using artificial data generated from the model and three forms of identification restrictions: zero, sign and bounds on the forecast error variance. We demonstrate that a VAR may not recover a subset of structural shocks when imperfect information causes the underlying model to be non-invertible. Journal Article Oxford Bulletin of Economics and Statistics 0 Wiley 0305-9049 1468-0084 imperfect information, impulse responses, invertibility-fundamentalness, SVAR-DSGE comparisons, validation of DSGE models 25 4 2025 2025-04-25 10.1111/obes.12683 COLLEGE NANME Social Sciences School COLLEGE CODE SOSS Swansea University SU Library paid the OA fee (TA Institutional Deal) Swansea University 2025-10-16T15:25:11.4870968 2025-04-15T09:14:58.8504116 Faculty of Humanities and Social Sciences School of Social Sciences - Economics Paul Levine 1 Joseph Pearlman 2 Alessio Volpicella 3 Bo Yang 0000-0001-5834-6002 4 69292__34135__9b3a85a521a74f0aa76b815591396902.pdf 69292.VOR.pdf 2025-04-29T13:25:37.3415991 Output 1263722 application/pdf Version of Record true © 2025 The Author(s). Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (CC BY). true eng http://creativecommons.org/licenses/by/4.0/ |
| title |
Validating DSGE Models Through SVARs Under Imperfect Information |
| spellingShingle |
Validating DSGE Models Through SVARs Under Imperfect Information Bo Yang |
| title_short |
Validating DSGE Models Through SVARs Under Imperfect Information |
| title_full |
Validating DSGE Models Through SVARs Under Imperfect Information |
| title_fullStr |
Validating DSGE Models Through SVARs Under Imperfect Information |
| title_full_unstemmed |
Validating DSGE Models Through SVARs Under Imperfect Information |
| title_sort |
Validating DSGE Models Through SVARs Under Imperfect Information |
| author_id_str_mv |
d8e17e56a3b9484ba22c3d43807c83bd |
| author_id_fullname_str_mv |
d8e17e56a3b9484ba22c3d43807c83bd_***_Bo Yang |
| author |
Bo Yang |
| author2 |
Paul Levine Joseph Pearlman Alessio Volpicella Bo Yang |
| format |
Journal article |
| container_title |
Oxford Bulletin of Economics and Statistics |
| container_volume |
0 |
| publishDate |
2025 |
| institution |
Swansea University |
| issn |
0305-9049 1468-0084 |
| doi_str_mv |
10.1111/obes.12683 |
| publisher |
Wiley |
| college_str |
Faculty of Humanities and Social Sciences |
| hierarchytype |
|
| hierarchy_top_id |
facultyofhumanitiesandsocialsciences |
| hierarchy_top_title |
Faculty of Humanities and Social Sciences |
| hierarchy_parent_id |
facultyofhumanitiesandsocialsciences |
| hierarchy_parent_title |
Faculty of Humanities and Social Sciences |
| department_str |
School of Social Sciences - Economics{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}School of Social Sciences - Economics |
| document_store_str |
1 |
| active_str |
0 |
| description |
We study the ability of SVARs to match impulse responses of a well-established DSGE model where the information of agents can be imperfect. We derive conditions for the solution of a linearized NK-DSGE model to be invertible given this information set. In the absence of invertibility, an approximate measure is constructed. An SVAR is estimated using artificial data generated from the model and three forms of identification restrictions: zero, sign and bounds on the forecast error variance. We demonstrate that a VAR may not recover a subset of structural shocks when imperfect information causes the underlying model to be non-invertible. |
| published_date |
2025-04-25T05:27:47Z |
| _version_ |
1851097840794730496 |
| score |
11.089386 |

