Journal article 636 views 474 downloads
Recent Progress of Digital Reconstruction in Polycrystalline Materials
Archives of Computational Methods in Engineering, Volume: 32, Issue: 6, Pages: 3447 - 3498
Swansea University Authors:
Bingbing Chen, Pete Davies, Richard Johnston , XIANGYUN GE, Chenfeng Li
-
PDF | Version of Record
© The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY).
Download (23.82MB)
DOI (Published version): 10.1007/s11831-025-10245-4
Abstract
This study comprehensively reviews recent advances in the digital reconstruction of polycrystalline materials. Digital reconstruction serves as both a representative volume element for multiscale modelling and a source of quantitative data for microstructure characterisation. Three main types of dig...
| Published in: | Archives of Computational Methods in Engineering |
|---|---|
| ISSN: | 1134-3060 1886-1784 |
| Published: |
Springer Nature
2025
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa68978 |
| first_indexed |
2025-02-27T11:28:51Z |
|---|---|
| last_indexed |
2025-08-07T08:09:39Z |
| id |
cronfa68978 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-08-06T14:36:11.7634157</datestamp><bib-version>v2</bib-version><id>68978</id><entry>2025-02-27</entry><title>Recent Progress of Digital Reconstruction in Polycrystalline Materials</title><swanseaauthors><author><sid>5b2828673b7414494f067b458092725c</sid><firstname>Bingbing</firstname><surname>Chen</surname><name>Bingbing Chen</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>38c85534a35a03aac99b687029078831</sid><firstname>Pete</firstname><surname>Davies</surname><name>Pete Davies</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>23282e7acce87dd926b8a62ae410a393</sid><ORCID>0000-0003-1977-6418</ORCID><firstname>Richard</firstname><surname>Johnston</surname><name>Richard Johnston</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c39ff918855a366c9266912315a176f9</sid><firstname>XIANGYUN</firstname><surname>GE</surname><name>XIANGYUN GE</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>82fe170d5ae2c840e538a36209e5a3ac</sid><ORCID>0000-0003-0441-211X</ORCID><firstname>Chenfeng</firstname><surname>Li</surname><name>Chenfeng Li</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-02-27</date><deptcode>ACEM</deptcode><abstract>This study comprehensively reviews recent advances in the digital reconstruction of polycrystalline materials. Digital reconstruction serves as both a representative volume element for multiscale modelling and a source of quantitative data for microstructure characterisation. Three main types of digital reconstruction in polycrystalline materials exist: (i) experimental reconstruction, which links processing-structure-properties-performance by reconstructing actual polycrystalline microstructures using destructive or non-destructive methods; (ii) physics-based models, which replicate evolutionary processes to establish processing-structure linkages, including cellular automata, Monte Carlo, vertex/front tracking, level set, machine learning, and phase field methods; and (iii) geometry-based models, which create ensembles of statistically equivalent polycrystalline microstructures for structure-properties-performance linkages, using simplistic morphology, Voronoi tessellation, ellipsoid packing, texture synthesis, high-order, reduced-order, and machine learning methods. This work reviews the key features, procedures, advantages, and limitations of these methods, with a particular focus on their application in constructing processing-structure-properties-performance linkages. Finally, it summarises the conclusions, challenges, and future directions for digital reconstruction in polycrystalline materials within the framework of computational materials engineering.</abstract><type>Journal Article</type><journal>Archives of Computational Methods in Engineering</journal><volume>32</volume><journalNumber>6</journalNumber><paginationStart>3447</paginationStart><paginationEnd>3498</paginationEnd><publisher>Springer Nature</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1134-3060</issnPrint><issnElectronic>1886-1784</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-08-01</publishedDate><doi>10.1007/s11831-025-10245-4</doi><url/><notes>Review</notes><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>The authors would like to thank the supports from Chinese Scholarship Council, Swansea University, and the Royal Society (IF∖R2∖23200112, IEC∖NSFC∖191628).</funders><projectreference/><lastEdited>2025-08-06T14:36:11.7634157</lastEdited><Created>2025-02-27T09:28:49.8289926</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Bingbing</firstname><surname>Chen</surname><order>1</order></author><author><firstname>Dongfeng</firstname><surname>Li</surname><order>2</order></author><author><firstname>Pete</firstname><surname>Davies</surname><order>3</order></author><author><firstname>Richard</firstname><surname>Johnston</surname><orcid>0000-0003-1977-6418</orcid><order>4</order></author><author><firstname>XIANGYUN</firstname><surname>GE</surname><order>5</order></author><author><firstname>Chenfeng</firstname><surname>Li</surname><orcid>0000-0003-0441-211X</orcid><order>6</order></author></authors><documents><document><filename>68978__33723__c49ff24051b74f019a70b116417686bb.pdf</filename><originalFilename>68978.VOR.pdf</originalFilename><uploaded>2025-03-03T10:54:28.2093080</uploaded><type>Output</type><contentLength>24980852</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-08-06T14:36:11.7634157 v2 68978 2025-02-27 Recent Progress of Digital Reconstruction in Polycrystalline Materials 5b2828673b7414494f067b458092725c Bingbing Chen Bingbing Chen true false 38c85534a35a03aac99b687029078831 Pete Davies Pete Davies true false 23282e7acce87dd926b8a62ae410a393 0000-0003-1977-6418 Richard Johnston Richard Johnston true false c39ff918855a366c9266912315a176f9 XIANGYUN GE XIANGYUN GE true false 82fe170d5ae2c840e538a36209e5a3ac 0000-0003-0441-211X Chenfeng Li Chenfeng Li true false 2025-02-27 ACEM This study comprehensively reviews recent advances in the digital reconstruction of polycrystalline materials. Digital reconstruction serves as both a representative volume element for multiscale modelling and a source of quantitative data for microstructure characterisation. Three main types of digital reconstruction in polycrystalline materials exist: (i) experimental reconstruction, which links processing-structure-properties-performance by reconstructing actual polycrystalline microstructures using destructive or non-destructive methods; (ii) physics-based models, which replicate evolutionary processes to establish processing-structure linkages, including cellular automata, Monte Carlo, vertex/front tracking, level set, machine learning, and phase field methods; and (iii) geometry-based models, which create ensembles of statistically equivalent polycrystalline microstructures for structure-properties-performance linkages, using simplistic morphology, Voronoi tessellation, ellipsoid packing, texture synthesis, high-order, reduced-order, and machine learning methods. This work reviews the key features, procedures, advantages, and limitations of these methods, with a particular focus on their application in constructing processing-structure-properties-performance linkages. Finally, it summarises the conclusions, challenges, and future directions for digital reconstruction in polycrystalline materials within the framework of computational materials engineering. Journal Article Archives of Computational Methods in Engineering 32 6 3447 3498 Springer Nature 1134-3060 1886-1784 1 8 2025 2025-08-01 10.1007/s11831-025-10245-4 Review COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University SU Library paid the OA fee (TA Institutional Deal) The authors would like to thank the supports from Chinese Scholarship Council, Swansea University, and the Royal Society (IF∖R2∖23200112, IEC∖NSFC∖191628). 2025-08-06T14:36:11.7634157 2025-02-27T09:28:49.8289926 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Bingbing Chen 1 Dongfeng Li 2 Pete Davies 3 Richard Johnston 0000-0003-1977-6418 4 XIANGYUN GE 5 Chenfeng Li 0000-0003-0441-211X 6 68978__33723__c49ff24051b74f019a70b116417686bb.pdf 68978.VOR.pdf 2025-03-03T10:54:28.2093080 Output 24980852 application/pdf Version of Record true © The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY). true eng http://creativecommons.org/licenses/by/4.0/ |
| title |
Recent Progress of Digital Reconstruction in Polycrystalline Materials |
| spellingShingle |
Recent Progress of Digital Reconstruction in Polycrystalline Materials Bingbing Chen Pete Davies Richard Johnston XIANGYUN GE Chenfeng Li |
| title_short |
Recent Progress of Digital Reconstruction in Polycrystalline Materials |
| title_full |
Recent Progress of Digital Reconstruction in Polycrystalline Materials |
| title_fullStr |
Recent Progress of Digital Reconstruction in Polycrystalline Materials |
| title_full_unstemmed |
Recent Progress of Digital Reconstruction in Polycrystalline Materials |
| title_sort |
Recent Progress of Digital Reconstruction in Polycrystalline Materials |
| author_id_str_mv |
5b2828673b7414494f067b458092725c 38c85534a35a03aac99b687029078831 23282e7acce87dd926b8a62ae410a393 c39ff918855a366c9266912315a176f9 82fe170d5ae2c840e538a36209e5a3ac |
| author_id_fullname_str_mv |
5b2828673b7414494f067b458092725c_***_Bingbing Chen 38c85534a35a03aac99b687029078831_***_Pete Davies 23282e7acce87dd926b8a62ae410a393_***_Richard Johnston c39ff918855a366c9266912315a176f9_***_XIANGYUN GE 82fe170d5ae2c840e538a36209e5a3ac_***_Chenfeng Li |
| author |
Bingbing Chen Pete Davies Richard Johnston XIANGYUN GE Chenfeng Li |
| author2 |
Bingbing Chen Dongfeng Li Pete Davies Richard Johnston XIANGYUN GE Chenfeng Li |
| format |
Journal article |
| container_title |
Archives of Computational Methods in Engineering |
| container_volume |
32 |
| container_issue |
6 |
| container_start_page |
3447 |
| publishDate |
2025 |
| institution |
Swansea University |
| issn |
1134-3060 1886-1784 |
| doi_str_mv |
10.1007/s11831-025-10245-4 |
| publisher |
Springer Nature |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
| document_store_str |
1 |
| active_str |
0 |
| description |
This study comprehensively reviews recent advances in the digital reconstruction of polycrystalline materials. Digital reconstruction serves as both a representative volume element for multiscale modelling and a source of quantitative data for microstructure characterisation. Three main types of digital reconstruction in polycrystalline materials exist: (i) experimental reconstruction, which links processing-structure-properties-performance by reconstructing actual polycrystalline microstructures using destructive or non-destructive methods; (ii) physics-based models, which replicate evolutionary processes to establish processing-structure linkages, including cellular automata, Monte Carlo, vertex/front tracking, level set, machine learning, and phase field methods; and (iii) geometry-based models, which create ensembles of statistically equivalent polycrystalline microstructures for structure-properties-performance linkages, using simplistic morphology, Voronoi tessellation, ellipsoid packing, texture synthesis, high-order, reduced-order, and machine learning methods. This work reviews the key features, procedures, advantages, and limitations of these methods, with a particular focus on their application in constructing processing-structure-properties-performance linkages. Finally, it summarises the conclusions, challenges, and future directions for digital reconstruction in polycrystalline materials within the framework of computational materials engineering. |
| published_date |
2025-08-01T05:26:57Z |
| _version_ |
1851097787551186944 |
| score |
11.089386 |

