No Cover Image

Conference Paper/Proceeding/Abstract 75 views 29 downloads

Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI

Asmail Muftah Orcid Logo, Sophie Shermer Orcid Logo, Frank C. Langbein Orcid Logo

Lecture Notes in Computer Science, Volume: 14976, Pages: 118 - 131

Swansea University Author: Sophie Shermer Orcid Logo

  • 2406.15571v1.pdf

    PDF | Accepted Manuscript

    Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).

    Download (3.79MB)
Published in: Lecture Notes in Computer Science
ISBN: 9783031672842 9783031672859
ISSN: 0302-9743 1611-3349
Published: Cham Springer Nature Switzerland 2024
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa68714
first_indexed 2025-01-30T16:02:05Z
last_indexed 2025-02-08T05:44:47Z
id cronfa68714
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-02-07T16:12:30.3329342</datestamp><bib-version>v2</bib-version><id>68714</id><entry>2025-01-20</entry><title>Texture Feature Analysis for&#xA0;Classification of&#xA0;Early-Stage Prostate Cancer in&#xA0;MpMRI</title><swanseaauthors><author><sid>6ebef22eb31eafc75aedcf5bfe487777</sid><ORCID>0000-0002-5530-7750</ORCID><firstname>Sophie</firstname><surname>Shermer</surname><name>Sophie Shermer</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-01-20</date><deptcode>BGPS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>Lecture Notes in Computer Science</journal><volume>14976</volume><journalNumber/><paginationStart>118</paginationStart><paginationEnd>131</paginationEnd><publisher>Springer Nature Switzerland</publisher><placeOfPublication>Cham</placeOfPublication><isbnPrint>9783031672842</isbnPrint><isbnElectronic>9783031672859</isbnElectronic><issnPrint>0302-9743</issnPrint><issnElectronic>1611-3349</issnElectronic><keywords>Early-Stage Prostate Cancer; Magnetic Resonance Imaging; Classification; Machine Learning; Explainable AI</keywords><publishedDay>15</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-08-15</publishedDate><doi>10.1007/978-3-031-67285-9_9</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders/><projectreference/><lastEdited>2025-02-07T16:12:30.3329342</lastEdited><Created>2025-01-20T23:20:41.5439546</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Asmail</firstname><surname>Muftah</surname><orcid>0000-0003-4174-8595</orcid><order>1</order></author><author><firstname>Sophie</firstname><surname>Shermer</surname><orcid>0000-0002-5530-7750</orcid><order>2</order></author><author><firstname>Frank C.</firstname><surname>Langbein</surname><orcid>0000-0002-3379-0323</orcid><order>3</order></author></authors><documents><document><filename>68714__33385__037bf21d55d2461e98c58d3d52b1b6ba.pdf</filename><originalFilename>2406.15571v1.pdf</originalFilename><uploaded>2025-01-20T23:23:41.0149086</uploaded><type>Output</type><contentLength>3977137</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807>
spelling 2025-02-07T16:12:30.3329342 v2 68714 2025-01-20 Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI 6ebef22eb31eafc75aedcf5bfe487777 0000-0002-5530-7750 Sophie Shermer Sophie Shermer true false 2025-01-20 BGPS Conference Paper/Proceeding/Abstract Lecture Notes in Computer Science 14976 118 131 Springer Nature Switzerland Cham 9783031672842 9783031672859 0302-9743 1611-3349 Early-Stage Prostate Cancer; Magnetic Resonance Imaging; Classification; Machine Learning; Explainable AI 15 8 2024 2024-08-15 10.1007/978-3-031-67285-9_9 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University Not Required 2025-02-07T16:12:30.3329342 2025-01-20T23:20:41.5439546 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Asmail Muftah 0000-0003-4174-8595 1 Sophie Shermer 0000-0002-5530-7750 2 Frank C. Langbein 0000-0002-3379-0323 3 68714__33385__037bf21d55d2461e98c58d3d52b1b6ba.pdf 2406.15571v1.pdf 2025-01-20T23:23:41.0149086 Output 3977137 application/pdf Accepted Manuscript true Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention). true eng https://creativecommons.org/licenses/by/4.0/deed.en
title Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI
spellingShingle Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI
Sophie Shermer
title_short Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI
title_full Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI
title_fullStr Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI
title_full_unstemmed Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI
title_sort Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI
author_id_str_mv 6ebef22eb31eafc75aedcf5bfe487777
author_id_fullname_str_mv 6ebef22eb31eafc75aedcf5bfe487777_***_Sophie Shermer
author Sophie Shermer
author2 Asmail Muftah
Sophie Shermer
Frank C. Langbein
format Conference Paper/Proceeding/Abstract
container_title Lecture Notes in Computer Science
container_volume 14976
container_start_page 118
publishDate 2024
institution Swansea University
isbn 9783031672842
9783031672859
issn 0302-9743
1611-3349
doi_str_mv 10.1007/978-3-031-67285-9_9
publisher Springer Nature Switzerland
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
published_date 2024-08-15T08:22:03Z
_version_ 1826919413765373952
score 11.055178