Conference Paper/Proceeding/Abstract 75 views 29 downloads
Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI
Lecture Notes in Computer Science, Volume: 14976, Pages: 118 - 131
Swansea University Author:
Sophie Shermer
-
PDF | Accepted Manuscript
Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).
Download (3.79MB)
DOI (Published version): 10.1007/978-3-031-67285-9_9
Abstract
Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI
Published in: | Lecture Notes in Computer Science |
---|---|
ISBN: | 9783031672842 9783031672859 |
ISSN: | 0302-9743 1611-3349 |
Published: |
Cham
Springer Nature Switzerland
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa68714 |
first_indexed |
2025-01-30T16:02:05Z |
---|---|
last_indexed |
2025-02-08T05:44:47Z |
id |
cronfa68714 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-02-07T16:12:30.3329342</datestamp><bib-version>v2</bib-version><id>68714</id><entry>2025-01-20</entry><title>Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI</title><swanseaauthors><author><sid>6ebef22eb31eafc75aedcf5bfe487777</sid><ORCID>0000-0002-5530-7750</ORCID><firstname>Sophie</firstname><surname>Shermer</surname><name>Sophie Shermer</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-01-20</date><deptcode>BGPS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>Lecture Notes in Computer Science</journal><volume>14976</volume><journalNumber/><paginationStart>118</paginationStart><paginationEnd>131</paginationEnd><publisher>Springer Nature Switzerland</publisher><placeOfPublication>Cham</placeOfPublication><isbnPrint>9783031672842</isbnPrint><isbnElectronic>9783031672859</isbnElectronic><issnPrint>0302-9743</issnPrint><issnElectronic>1611-3349</issnElectronic><keywords>Early-Stage Prostate Cancer; Magnetic Resonance Imaging; Classification; Machine Learning; Explainable AI</keywords><publishedDay>15</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-08-15</publishedDate><doi>10.1007/978-3-031-67285-9_9</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders/><projectreference/><lastEdited>2025-02-07T16:12:30.3329342</lastEdited><Created>2025-01-20T23:20:41.5439546</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Asmail</firstname><surname>Muftah</surname><orcid>0000-0003-4174-8595</orcid><order>1</order></author><author><firstname>Sophie</firstname><surname>Shermer</surname><orcid>0000-0002-5530-7750</orcid><order>2</order></author><author><firstname>Frank C.</firstname><surname>Langbein</surname><orcid>0000-0002-3379-0323</orcid><order>3</order></author></authors><documents><document><filename>68714__33385__037bf21d55d2461e98c58d3d52b1b6ba.pdf</filename><originalFilename>2406.15571v1.pdf</originalFilename><uploaded>2025-01-20T23:23:41.0149086</uploaded><type>Output</type><contentLength>3977137</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2025-02-07T16:12:30.3329342 v2 68714 2025-01-20 Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI 6ebef22eb31eafc75aedcf5bfe487777 0000-0002-5530-7750 Sophie Shermer Sophie Shermer true false 2025-01-20 BGPS Conference Paper/Proceeding/Abstract Lecture Notes in Computer Science 14976 118 131 Springer Nature Switzerland Cham 9783031672842 9783031672859 0302-9743 1611-3349 Early-Stage Prostate Cancer; Magnetic Resonance Imaging; Classification; Machine Learning; Explainable AI 15 8 2024 2024-08-15 10.1007/978-3-031-67285-9_9 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University Not Required 2025-02-07T16:12:30.3329342 2025-01-20T23:20:41.5439546 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Asmail Muftah 0000-0003-4174-8595 1 Sophie Shermer 0000-0002-5530-7750 2 Frank C. Langbein 0000-0002-3379-0323 3 68714__33385__037bf21d55d2461e98c58d3d52b1b6ba.pdf 2406.15571v1.pdf 2025-01-20T23:23:41.0149086 Output 3977137 application/pdf Accepted Manuscript true Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention). true eng https://creativecommons.org/licenses/by/4.0/deed.en |
title |
Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI |
spellingShingle |
Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI Sophie Shermer |
title_short |
Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI |
title_full |
Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI |
title_fullStr |
Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI |
title_full_unstemmed |
Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI |
title_sort |
Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in MpMRI |
author_id_str_mv |
6ebef22eb31eafc75aedcf5bfe487777 |
author_id_fullname_str_mv |
6ebef22eb31eafc75aedcf5bfe487777_***_Sophie Shermer |
author |
Sophie Shermer |
author2 |
Asmail Muftah Sophie Shermer Frank C. Langbein |
format |
Conference Paper/Proceeding/Abstract |
container_title |
Lecture Notes in Computer Science |
container_volume |
14976 |
container_start_page |
118 |
publishDate |
2024 |
institution |
Swansea University |
isbn |
9783031672842 9783031672859 |
issn |
0302-9743 1611-3349 |
doi_str_mv |
10.1007/978-3-031-67285-9_9 |
publisher |
Springer Nature Switzerland |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
document_store_str |
1 |
active_str |
0 |
published_date |
2024-08-15T08:22:03Z |
_version_ |
1826919413765373952 |
score |
11.056102 |