Conference Paper/Proceeding/Abstract 414 views 124 downloads
Domain-Invariant Crop Type Mapping Using Transformer-Based Time-Frequency Feature Extraction and Adaptation for Unlabeled Target Regions
2024 International Conference on Machine Learning and Applications (ICMLA), Pages: 1593 - 1598
Swansea University Author:
Sara Sharifzadeh
-
PDF | Accepted Manuscript
Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).
Download (376.56KB)
DOI (Published version): 10.1109/icmla61862.2024.00246
Abstract
Domain-Invariant Crop Type Mapping Using Transformer-Based Time-Frequency Feature Extraction and Adaptation for Unlabeled Target Regions
| Published in: | 2024 International Conference on Machine Learning and Applications (ICMLA) |
|---|---|
| ISBN: | 979-8-3503-7489-6 979-8-3503-7488-9 |
| ISSN: | 1946-0740 1946-0759 |
| Published: |
IEEE
2024
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa68669 |
| first_indexed |
2025-01-10T14:34:19Z |
|---|---|
| last_indexed |
2025-03-18T05:29:12Z |
| id |
cronfa68669 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-03-17T11:26:49.0251002</datestamp><bib-version>v2</bib-version><id>68669</id><entry>2025-01-10</entry><title>Domain-Invariant Crop Type Mapping Using Transformer-Based Time-Frequency Feature Extraction and Adaptation for Unlabeled Target Regions</title><swanseaauthors><author><sid>a4e15f304398ecee3f28c7faec69c1b0</sid><ORCID>0000-0003-4621-2917</ORCID><firstname>Sara</firstname><surname>Sharifzadeh</surname><name>Sara Sharifzadeh</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-01-10</date><deptcode>MACS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>2024 International Conference on Machine Learning and Applications (ICMLA)</journal><volume/><journalNumber/><paginationStart>1593</paginationStart><paginationEnd>1598</paginationEnd><publisher>IEEE</publisher><placeOfPublication/><isbnPrint>979-8-3503-7489-6</isbnPrint><isbnElectronic>979-8-3503-7488-9</isbnElectronic><issnPrint>1946-0740</issnPrint><issnElectronic>1946-0759</issnElectronic><keywords>Training, Time-frequency analysis, Adaptation models, Accuracy, Time series analysis, Crops, Transformers, Feature extraction, Monitoring, Remote sensing</keywords><publishedDay>18</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-12-18</publishedDate><doi>10.1109/icmla61862.2024.00246</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>Global Challenge Research Fund (Coventry University)</funders><projectreference/><lastEdited>2025-03-17T11:26:49.0251002</lastEdited><Created>2025-01-10T11:42:14.2491370</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Shruti</firstname><surname>Nair</surname><order>1</order></author><author><firstname>Vasile</firstname><surname>Palade</surname><order>2</order></author><author><firstname>Sara</firstname><surname>Sharifzadeh</surname><orcid>0000-0003-4621-2917</orcid><order>3</order></author><author><firstname>Charley</firstname><surname>Hill-Butler</surname><order>4</order></author></authors><documents><document><filename>68669__33731__817c46c1848d4bbdacf5c505bad1734e.pdf</filename><originalFilename>AcceptedVersion.pdf</originalFilename><uploaded>2025-03-04T16:48:53.8816742</uploaded><type>Output</type><contentLength>385597</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-03-17T11:26:49.0251002 v2 68669 2025-01-10 Domain-Invariant Crop Type Mapping Using Transformer-Based Time-Frequency Feature Extraction and Adaptation for Unlabeled Target Regions a4e15f304398ecee3f28c7faec69c1b0 0000-0003-4621-2917 Sara Sharifzadeh Sara Sharifzadeh true false 2025-01-10 MACS Conference Paper/Proceeding/Abstract 2024 International Conference on Machine Learning and Applications (ICMLA) 1593 1598 IEEE 979-8-3503-7489-6 979-8-3503-7488-9 1946-0740 1946-0759 Training, Time-frequency analysis, Adaptation models, Accuracy, Time series analysis, Crops, Transformers, Feature extraction, Monitoring, Remote sensing 18 12 2024 2024-12-18 10.1109/icmla61862.2024.00246 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University Not Required Global Challenge Research Fund (Coventry University) 2025-03-17T11:26:49.0251002 2025-01-10T11:42:14.2491370 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Shruti Nair 1 Vasile Palade 2 Sara Sharifzadeh 0000-0003-4621-2917 3 Charley Hill-Butler 4 68669__33731__817c46c1848d4bbdacf5c505bad1734e.pdf AcceptedVersion.pdf 2025-03-04T16:48:53.8816742 Output 385597 application/pdf Accepted Manuscript true Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention). true eng https://creativecommons.org/licenses/by/4.0/deed.en |
| title |
Domain-Invariant Crop Type Mapping Using Transformer-Based Time-Frequency Feature Extraction and Adaptation for Unlabeled Target Regions |
| spellingShingle |
Domain-Invariant Crop Type Mapping Using Transformer-Based Time-Frequency Feature Extraction and Adaptation for Unlabeled Target Regions Sara Sharifzadeh |
| title_short |
Domain-Invariant Crop Type Mapping Using Transformer-Based Time-Frequency Feature Extraction and Adaptation for Unlabeled Target Regions |
| title_full |
Domain-Invariant Crop Type Mapping Using Transformer-Based Time-Frequency Feature Extraction and Adaptation for Unlabeled Target Regions |
| title_fullStr |
Domain-Invariant Crop Type Mapping Using Transformer-Based Time-Frequency Feature Extraction and Adaptation for Unlabeled Target Regions |
| title_full_unstemmed |
Domain-Invariant Crop Type Mapping Using Transformer-Based Time-Frequency Feature Extraction and Adaptation for Unlabeled Target Regions |
| title_sort |
Domain-Invariant Crop Type Mapping Using Transformer-Based Time-Frequency Feature Extraction and Adaptation for Unlabeled Target Regions |
| author_id_str_mv |
a4e15f304398ecee3f28c7faec69c1b0 |
| author_id_fullname_str_mv |
a4e15f304398ecee3f28c7faec69c1b0_***_Sara Sharifzadeh |
| author |
Sara Sharifzadeh |
| author2 |
Shruti Nair Vasile Palade Sara Sharifzadeh Charley Hill-Butler |
| format |
Conference Paper/Proceeding/Abstract |
| container_title |
2024 International Conference on Machine Learning and Applications (ICMLA) |
| container_start_page |
1593 |
| publishDate |
2024 |
| institution |
Swansea University |
| isbn |
979-8-3503-7489-6 979-8-3503-7488-9 |
| issn |
1946-0740 1946-0759 |
| doi_str_mv |
10.1109/icmla61862.2024.00246 |
| publisher |
IEEE |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| document_store_str |
1 |
| active_str |
0 |
| published_date |
2024-12-18T05:26:06Z |
| _version_ |
1851097734242631680 |
| score |
11.444299 |

