Journal article 7 views
Investigating the impact of discretization techniques on real-time digital control of DC-DC boost converters: A comprehensive analysis
Heliyon, Volume: 10, Issue: 20, Start page: e39591
Swansea University Author: Zhongfu Zhou
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1016/j.heliyon.2024.e39591
Abstract
This paper provides a thorough comparative analysis of discretization techniques commonly utilized in digital control applications for DC-DC boost converters (DBCs). Given the crucial role of DC-DC converters in various industries such as renewable energy systems, electric vehicles, and portable ele...
Published in: | Heliyon |
---|---|
ISSN: | 2405-8440 |
Published: |
Elsevier BV
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa68586 |
Abstract: |
This paper provides a thorough comparative analysis of discretization techniques commonly utilized in digital control applications for DC-DC boost converters (DBCs). Given the crucial role of DC-DC converters in various industries such as renewable energy systems, electric vehicles, and portable electronic devices, it is imperative to optimize their performance through efficient digital control. This study aims to improve the understanding of the effects of discretization methods on control system behaviour. It investigates their impact on the performance, stability and accuracy of control algorithms in the context of DBC, using dSPACE real-time interface (RTI) and hardware-in-the-loop (HIL) simulation for validation. This approach replicates real-world conditions, allowing performance to be evaluated in a controlled environment. The analysis examines behaviour in the time and frequency domains, providing insight into the strengths and weaknesses of each method. Experimental validation using MATLAB/Simulink/Stateflow on dSPACE RTI 1007 processor, DS2004 high-speed A/D and CP4002 timing and digital I/O boards ensures that the comparative analysis provides practical benefits for DBC digital control applications. |
---|---|
Keywords: |
Nonlinear systems, DC-DC boost converter, Discretization techniques, Internal distorting delays, Effective sample time determination |
College: |
Faculty of Science and Engineering |
Issue: |
20 |
Start Page: |
e39591 |