Journal article 339 views 7 downloads
Determining absolute neutrino mass using quantum technologies
New Journal of Physics, Volume: 27, Issue: 10, Start page: 105006
Swansea University Authors:
Alan Amad, Lijie Li
-
PDF | Version of Record
Original Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.
Download (4.12MB)
DOI (Published version): 10.1088/1367-2630/adc624
Abstract
Next generation tritium decay experiments to determine the absolute neutrino mass require high-precision measurements of β-decay electron energies close to the kinematic end point. To achieve this, the development of high phase-space density sources of atomic tritium is required, along with the impl...
| Published in: | New Journal of Physics |
|---|---|
| ISSN: | 1367-2630 |
| Published: |
IOP Publishing
2025
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa68526 |
| first_indexed |
2025-01-30T16:02:05Z |
|---|---|
| last_indexed |
2025-11-08T06:08:48Z |
| id |
cronfa68526 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-11-07T11:35:28.7637780</datestamp><bib-version>v2</bib-version><id>68526</id><entry>2024-12-11</entry><title>Determining absolute neutrino mass using quantum technologies</title><swanseaauthors><author><sid>fe2123481afa7460a369317354cba4ec</sid><firstname>Alan</firstname><surname>Amad</surname><name>Alan Amad</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>ed2c658b77679a28e4c1dcf95af06bd6</sid><ORCID>0000-0003-4630-7692</ORCID><firstname>Lijie</firstname><surname>Li</surname><name>Lijie Li</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-12-11</date><deptcode>ONDF</deptcode><abstract>Next generation tritium decay experiments to determine the absolute neutrino mass require high-precision measurements of β-decay electron energies close to the kinematic end point. To achieve this, the development of high phase-space density sources of atomic tritium is required, along with the implementation of methods to control the motion of these atoms to allow extended observation times. A promising approach to efficiently and accurately measure the kinetic energies of individual β-decay electrons generated in these dilute atomic gases, is to determine the frequency of the cyclotron radiation they emit in a precisely characterised magnetic field. This cyclotron radiation emission spectroscopy (CRES) technique can benefit from recent developments in quantum technologies. Absolute static-field magnetometry and electrometry, which is essential for the precise determination of the electron kinetic energies from the frequency of their emitted cyclotron radiation, can be performed using atoms in superpositions of circular Rydberg states. Quantum-limited microwave amplifiers will allow precise cyclotron frequency measurements to be made with maximal signal-to-noise ratios and minimal observation times. Exploiting the opportunities offered by quantum technologies in these key areas, represents the core activity of the Quantum Technologies for Neutrino Mass (QTNM) project. Its goal is to develop a new experimental apparatus that can enable a determination of the absolute neutrino mass with a sensitivity on the order of 10~meV/c2.</abstract><type>Journal Article</type><journal>New Journal of Physics</journal><volume>27</volume><journalNumber>10</journalNumber><paginationStart>105006</paginationStart><paginationEnd/><publisher>IOP Publishing</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1367-2630</issnElectronic><keywords>neutrino mass, tritium β-decay, atomic tritium source, cyclotron radiation emission spectroscopy (CRES), quantum-limited microwave receivers, Rydberg states magnetometry, quantum technologies</keywords><publishedDay>24</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-10-24</publishedDate><doi>10.1088/1367-2630/adc624</doi><url/><notes/><college>COLLEGE NANME</college><department>Other/Subsidiary Companies - Not Defined</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ONDF</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>This work was supported by the UK Science and Technology Facilities Research Council (STFC) through the Quantum Technologies for Neutrino Mass (QTNM) Project (Grant No. ST/T006439/1). NM is grateful to the STFC for their support through an Ernest Rutherford Fellowship (ST/W003880/1). ES is grateful for the support of the Erasmus+ Programme of the European Union.</funders><projectreference/><lastEdited>2025-11-07T11:35:28.7637780</lastEdited><Created>2024-12-11T13:29:08.1782406</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>Alan</firstname><surname>Amad</surname><order>1</order></author><author><firstname>F F</firstname><surname>Deppisch</surname><orcid>0000-0002-5938-2627</orcid><order>2</order></author><author><firstname>M</firstname><surname>Fleck</surname><orcid>0000-0003-4114-1902</orcid><order>3</order></author><author><firstname>J</firstname><surname>Gallop</surname><order>4</order></author><author><firstname>T</firstname><surname>Goffrey</surname><orcid>0000-0003-0784-1294</orcid><order>5</order></author><author><firstname>L</firstname><surname>Hao</surname><order>6</order></author><author><firstname>N</firstname><surname>Higginbotham</surname><order>7</order></author><author><firstname>S D</firstname><surname>Hogan</surname><orcid>0000-0002-7720-3979</orcid><order>8</order></author><author><firstname>S B</firstname><surname>Jones</surname><orcid>0000-0002-8436-8026</orcid><order>9</order></author><author><firstname>Lijie</firstname><surname>Li</surname><orcid>0000-0003-4630-7692</orcid><order>10</order></author><author><firstname>N</firstname><surname>McConkey</surname><orcid>0000-0002-0385-3098</orcid><order>11</order></author><author><firstname>V</firstname><surname>Monachello</surname><order>12</order></author><author><firstname>R</firstname><surname>Nichol</surname><orcid>0000-0003-0557-0443</orcid><order>13</order></author><author><firstname>J A</firstname><surname>Potter</surname><orcid>0000-0001-5621-1841</orcid><order>14</order></author><author><firstname>Y</firstname><surname>Ramachers</surname><orcid>0000-0002-7403-775x</orcid><order>15</order></author><author><firstname>R</firstname><surname>Saakyan</surname><orcid>0000-0001-7012-789x</orcid><order>16</order></author><author><firstname>E</firstname><surname>Sedzielewski</surname><order>17</order></author><author><firstname>D</firstname><surname>Swinnock</surname><order>18</order></author><author><firstname>D</firstname><surname>Waters</surname><order>19</order></author><author><firstname>S</firstname><surname>Withington</surname><orcid>0000-0003-3389-2810</orcid><order>20</order></author><author><firstname>S</firstname><surname>Zhao</surname><orcid>0000-0002-5712-6937</orcid><order>21</order></author><author><firstname>J</firstname><surname>Zou</surname><orcid>0000-0002-0629-9520</orcid><order>22</order></author></authors><documents><document><filename>68526__35584__68db501640de49d3acd9d4d8173ee09c.pdf</filename><originalFilename>68526.VOR.pdf</originalFilename><uploaded>2025-11-07T11:25:14.2518465</uploaded><type>Output</type><contentLength>4319374</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Original Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-11-07T11:35:28.7637780 v2 68526 2024-12-11 Determining absolute neutrino mass using quantum technologies fe2123481afa7460a369317354cba4ec Alan Amad Alan Amad true false ed2c658b77679a28e4c1dcf95af06bd6 0000-0003-4630-7692 Lijie Li Lijie Li true false 2024-12-11 ONDF Next generation tritium decay experiments to determine the absolute neutrino mass require high-precision measurements of β-decay electron energies close to the kinematic end point. To achieve this, the development of high phase-space density sources of atomic tritium is required, along with the implementation of methods to control the motion of these atoms to allow extended observation times. A promising approach to efficiently and accurately measure the kinetic energies of individual β-decay electrons generated in these dilute atomic gases, is to determine the frequency of the cyclotron radiation they emit in a precisely characterised magnetic field. This cyclotron radiation emission spectroscopy (CRES) technique can benefit from recent developments in quantum technologies. Absolute static-field magnetometry and electrometry, which is essential for the precise determination of the electron kinetic energies from the frequency of their emitted cyclotron radiation, can be performed using atoms in superpositions of circular Rydberg states. Quantum-limited microwave amplifiers will allow precise cyclotron frequency measurements to be made with maximal signal-to-noise ratios and minimal observation times. Exploiting the opportunities offered by quantum technologies in these key areas, represents the core activity of the Quantum Technologies for Neutrino Mass (QTNM) project. Its goal is to develop a new experimental apparatus that can enable a determination of the absolute neutrino mass with a sensitivity on the order of 10~meV/c2. Journal Article New Journal of Physics 27 10 105006 IOP Publishing 1367-2630 neutrino mass, tritium β-decay, atomic tritium source, cyclotron radiation emission spectroscopy (CRES), quantum-limited microwave receivers, Rydberg states magnetometry, quantum technologies 24 10 2025 2025-10-24 10.1088/1367-2630/adc624 COLLEGE NANME Other/Subsidiary Companies - Not Defined COLLEGE CODE ONDF Swansea University Another institution paid the OA fee This work was supported by the UK Science and Technology Facilities Research Council (STFC) through the Quantum Technologies for Neutrino Mass (QTNM) Project (Grant No. ST/T006439/1). NM is grateful to the STFC for their support through an Ernest Rutherford Fellowship (ST/W003880/1). ES is grateful for the support of the Erasmus+ Programme of the European Union. 2025-11-07T11:35:28.7637780 2024-12-11T13:29:08.1782406 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering Alan Amad 1 F F Deppisch 0000-0002-5938-2627 2 M Fleck 0000-0003-4114-1902 3 J Gallop 4 T Goffrey 0000-0003-0784-1294 5 L Hao 6 N Higginbotham 7 S D Hogan 0000-0002-7720-3979 8 S B Jones 0000-0002-8436-8026 9 Lijie Li 0000-0003-4630-7692 10 N McConkey 0000-0002-0385-3098 11 V Monachello 12 R Nichol 0000-0003-0557-0443 13 J A Potter 0000-0001-5621-1841 14 Y Ramachers 0000-0002-7403-775x 15 R Saakyan 0000-0001-7012-789x 16 E Sedzielewski 17 D Swinnock 18 D Waters 19 S Withington 0000-0003-3389-2810 20 S Zhao 0000-0002-5712-6937 21 J Zou 0000-0002-0629-9520 22 68526__35584__68db501640de49d3acd9d4d8173ee09c.pdf 68526.VOR.pdf 2025-11-07T11:25:14.2518465 Output 4319374 application/pdf Version of Record true Original Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. true eng https://creativecommons.org/licenses/by/4.0/ |
| title |
Determining absolute neutrino mass using quantum technologies |
| spellingShingle |
Determining absolute neutrino mass using quantum technologies Alan Amad Lijie Li |
| title_short |
Determining absolute neutrino mass using quantum technologies |
| title_full |
Determining absolute neutrino mass using quantum technologies |
| title_fullStr |
Determining absolute neutrino mass using quantum technologies |
| title_full_unstemmed |
Determining absolute neutrino mass using quantum technologies |
| title_sort |
Determining absolute neutrino mass using quantum technologies |
| author_id_str_mv |
fe2123481afa7460a369317354cba4ec ed2c658b77679a28e4c1dcf95af06bd6 |
| author_id_fullname_str_mv |
fe2123481afa7460a369317354cba4ec_***_Alan Amad ed2c658b77679a28e4c1dcf95af06bd6_***_Lijie Li |
| author |
Alan Amad Lijie Li |
| author2 |
Alan Amad F F Deppisch M Fleck J Gallop T Goffrey L Hao N Higginbotham S D Hogan S B Jones Lijie Li N McConkey V Monachello R Nichol J A Potter Y Ramachers R Saakyan E Sedzielewski D Swinnock D Waters S Withington S Zhao J Zou |
| format |
Journal article |
| container_title |
New Journal of Physics |
| container_volume |
27 |
| container_issue |
10 |
| container_start_page |
105006 |
| publishDate |
2025 |
| institution |
Swansea University |
| issn |
1367-2630 |
| doi_str_mv |
10.1088/1367-2630/adc624 |
| publisher |
IOP Publishing |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering |
| document_store_str |
1 |
| active_str |
0 |
| description |
Next generation tritium decay experiments to determine the absolute neutrino mass require high-precision measurements of β-decay electron energies close to the kinematic end point. To achieve this, the development of high phase-space density sources of atomic tritium is required, along with the implementation of methods to control the motion of these atoms to allow extended observation times. A promising approach to efficiently and accurately measure the kinetic energies of individual β-decay electrons generated in these dilute atomic gases, is to determine the frequency of the cyclotron radiation they emit in a precisely characterised magnetic field. This cyclotron radiation emission spectroscopy (CRES) technique can benefit from recent developments in quantum technologies. Absolute static-field magnetometry and electrometry, which is essential for the precise determination of the electron kinetic energies from the frequency of their emitted cyclotron radiation, can be performed using atoms in superpositions of circular Rydberg states. Quantum-limited microwave amplifiers will allow precise cyclotron frequency measurements to be made with maximal signal-to-noise ratios and minimal observation times. Exploiting the opportunities offered by quantum technologies in these key areas, represents the core activity of the Quantum Technologies for Neutrino Mass (QTNM) project. Its goal is to develop a new experimental apparatus that can enable a determination of the absolute neutrino mass with a sensitivity on the order of 10~meV/c2. |
| published_date |
2025-10-24T06:44:33Z |
| _version_ |
1851283864533598208 |
| score |
11.090299 |

