No Cover Image

Conference Paper/Proceeding/Abstract 88 views 25 downloads

Synthetic Data, Common Data Models and Federation: Holy Trinity or unholy mess?

James H Boyd, Simon Ellwood-Thompson, Michael Schull, Alison L Park, Benjamin Hachey, Ashley Akbari Orcid Logo

International Journal of Population Data Science, Volume: 9, Issue: 5

Swansea University Authors: Simon Ellwood-Thompson, Ashley Akbari Orcid Logo

  • 68425.VoR.pdf

    PDF | Version of Record

    Copyright 2024 © The Authors. Open Access under CC BY 4.0.

    Download (199.64KB)
Published in: International Journal of Population Data Science
ISSN: 2399-4908
Published: Swansea University 2024
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa68425
first_indexed 2025-01-30T16:02:05Z
last_indexed 2025-01-31T20:26:41Z
id cronfa68425
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-01-31T16:00:32.8858388</datestamp><bib-version>v2</bib-version><id>68425</id><entry>2024-12-02</entry><title>Synthetic Data, Common Data Models and Federation: Holy Trinity or unholy mess?</title><swanseaauthors><author><sid>6498256ca5bc432bd9626503f1019113</sid><firstname>Simon</firstname><surname>Ellwood-Thompson</surname><name>Simon Ellwood-Thompson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>aa1b025ec0243f708bb5eb0a93d6fb52</sid><ORCID>0000-0003-0814-0801</ORCID><firstname>Ashley</firstname><surname>Akbari</surname><name>Ashley Akbari</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-12-02</date><deptcode>MEDS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>International Journal of Population Data Science</journal><volume>9</volume><journalNumber>5</journalNumber><paginationStart/><paginationEnd/><publisher>Swansea University</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2399-4908</issnElectronic><keywords/><publishedDay>30</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-10-30</publishedDate><doi>10.23889/ijpds.v9i5.2933</doi><url/><notes/><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2025-01-31T16:00:32.8858388</lastEdited><Created>2024-12-02T19:31:01.9426240</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Health Data Science</level></path><authors><author><firstname>James H</firstname><surname>Boyd</surname><order>1</order></author><author><firstname>Simon</firstname><surname>Ellwood-Thompson</surname><order>2</order></author><author><firstname>Michael</firstname><surname>Schull</surname><order>3</order></author><author><firstname>Alison L</firstname><surname>Park</surname><order>4</order></author><author><firstname>Benjamin</firstname><surname>Hachey</surname><order>5</order></author><author><firstname>Ashley</firstname><surname>Akbari</surname><orcid>0000-0003-0814-0801</orcid><order>6</order></author></authors><documents><document><filename>68425__33473__91a4c7e2993b4403872065e80573a869.pdf</filename><originalFilename>68425.VoR.pdf</originalFilename><uploaded>2025-01-31T15:59:08.2519181</uploaded><type>Output</type><contentLength>204435</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Copyright 2024 &#xA9; The Authors. Open Access under CC BY 4.0.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807>
spelling 2025-01-31T16:00:32.8858388 v2 68425 2024-12-02 Synthetic Data, Common Data Models and Federation: Holy Trinity or unholy mess? 6498256ca5bc432bd9626503f1019113 Simon Ellwood-Thompson Simon Ellwood-Thompson true false aa1b025ec0243f708bb5eb0a93d6fb52 0000-0003-0814-0801 Ashley Akbari Ashley Akbari true false 2024-12-02 MEDS Conference Paper/Proceeding/Abstract International Journal of Population Data Science 9 5 Swansea University 2399-4908 30 10 2024 2024-10-30 10.23889/ijpds.v9i5.2933 COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University 2025-01-31T16:00:32.8858388 2024-12-02T19:31:01.9426240 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Health Data Science James H Boyd 1 Simon Ellwood-Thompson 2 Michael Schull 3 Alison L Park 4 Benjamin Hachey 5 Ashley Akbari 0000-0003-0814-0801 6 68425__33473__91a4c7e2993b4403872065e80573a869.pdf 68425.VoR.pdf 2025-01-31T15:59:08.2519181 Output 204435 application/pdf Version of Record true Copyright 2024 © The Authors. Open Access under CC BY 4.0. true eng https://creativecommons.org/licenses/by/4.0/deed.en
title Synthetic Data, Common Data Models and Federation: Holy Trinity or unholy mess?
spellingShingle Synthetic Data, Common Data Models and Federation: Holy Trinity or unholy mess?
Simon Ellwood-Thompson
Ashley Akbari
title_short Synthetic Data, Common Data Models and Federation: Holy Trinity or unholy mess?
title_full Synthetic Data, Common Data Models and Federation: Holy Trinity or unholy mess?
title_fullStr Synthetic Data, Common Data Models and Federation: Holy Trinity or unholy mess?
title_full_unstemmed Synthetic Data, Common Data Models and Federation: Holy Trinity or unholy mess?
title_sort Synthetic Data, Common Data Models and Federation: Holy Trinity or unholy mess?
author_id_str_mv 6498256ca5bc432bd9626503f1019113
aa1b025ec0243f708bb5eb0a93d6fb52
author_id_fullname_str_mv 6498256ca5bc432bd9626503f1019113_***_Simon Ellwood-Thompson
aa1b025ec0243f708bb5eb0a93d6fb52_***_Ashley Akbari
author Simon Ellwood-Thompson
Ashley Akbari
author2 James H Boyd
Simon Ellwood-Thompson
Michael Schull
Alison L Park
Benjamin Hachey
Ashley Akbari
format Conference Paper/Proceeding/Abstract
container_title International Journal of Population Data Science
container_volume 9
container_issue 5
publishDate 2024
institution Swansea University
issn 2399-4908
doi_str_mv 10.23889/ijpds.v9i5.2933
publisher Swansea University
college_str Faculty of Medicine, Health and Life Sciences
hierarchytype
hierarchy_top_id facultyofmedicinehealthandlifesciences
hierarchy_top_title Faculty of Medicine, Health and Life Sciences
hierarchy_parent_id facultyofmedicinehealthandlifesciences
hierarchy_parent_title Faculty of Medicine, Health and Life Sciences
department_str Swansea University Medical School - Health Data Science{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Health Data Science
document_store_str 1
active_str 0
published_date 2024-10-30T09:38:40Z
_version_ 1830272547689594880
score 11.060726