No Cover Image

Conference Paper/Proceeding/Abstract 52 views 11 downloads

Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data

Hoda Abbasizanjani Orcid Logo, Stuart Bedston, Lucy Robinson, Matthew Curds, Ashley Akbari Orcid Logo

International Journal of Population Data Science, Volume: 9, Issue: 5

Swansea University Authors: Hoda Abbasizanjani Orcid Logo, Stuart Bedston, Ashley Akbari Orcid Logo

Published in: International Journal of Population Data Science
ISSN: 2399-4908
Published: Swansea University 2024
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa68417
first_indexed 2025-01-30T16:02:05Z
last_indexed 2025-02-04T14:29:27Z
id cronfa68417
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-02-04T11:22:02.9024798</datestamp><bib-version>v2</bib-version><id>68417</id><entry>2024-12-02</entry><title>Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data</title><swanseaauthors><author><sid>93dd7e747f3118a99566c68592a3ddcc</sid><ORCID>0000-0002-9575-4758</ORCID><firstname>Hoda</firstname><surname>Abbasizanjani</surname><name>Hoda Abbasizanjani</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c79d07eaba5c9515c0df82b372b76a41</sid><firstname>Stuart</firstname><surname>Bedston</surname><name>Stuart Bedston</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>aa1b025ec0243f708bb5eb0a93d6fb52</sid><ORCID>0000-0003-0814-0801</ORCID><firstname>Ashley</firstname><surname>Akbari</surname><name>Ashley Akbari</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-12-02</date><deptcode>MEDS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>International Journal of Population Data Science</journal><volume>9</volume><journalNumber>5</journalNumber><paginationStart/><paginationEnd/><publisher>Swansea University</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2399-4908</issnElectronic><keywords/><publishedDay>10</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-09-10</publishedDate><doi>10.23889/ijpds.v9i5.2611</doi><url/><notes>Abstract</notes><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2025-02-04T11:22:02.9024798</lastEdited><Created>2024-12-02T18:51:51.2140001</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Health Data Science</level></path><authors><author><firstname>Hoda</firstname><surname>Abbasizanjani</surname><orcid>0000-0002-9575-4758</orcid><order>1</order></author><author><firstname>Stuart</firstname><surname>Bedston</surname><order>2</order></author><author><firstname>Lucy</firstname><surname>Robinson</surname><order>3</order></author><author><firstname>Matthew</firstname><surname>Curds</surname><order>4</order></author><author><firstname>Ashley</firstname><surname>Akbari</surname><orcid>0000-0003-0814-0801</orcid><order>5</order></author></authors><documents><document><filename>68417__33485__84dd77791a4d4ec09c9491c318ce7fa3.pdf</filename><originalFilename>68417.VoR.pdf</originalFilename><uploaded>2025-02-04T11:21:10.9094577</uploaded><type>Output</type><contentLength>207668</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>2024 &#xA9; The Authors. Open Access under CC BY 4.0.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807>
spelling 2025-02-04T11:22:02.9024798 v2 68417 2024-12-02 Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data 93dd7e747f3118a99566c68592a3ddcc 0000-0002-9575-4758 Hoda Abbasizanjani Hoda Abbasizanjani true false c79d07eaba5c9515c0df82b372b76a41 Stuart Bedston Stuart Bedston true false aa1b025ec0243f708bb5eb0a93d6fb52 0000-0003-0814-0801 Ashley Akbari Ashley Akbari true false 2024-12-02 MEDS Conference Paper/Proceeding/Abstract International Journal of Population Data Science 9 5 Swansea University 2399-4908 10 9 2024 2024-09-10 10.23889/ijpds.v9i5.2611 Abstract COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University 2025-02-04T11:22:02.9024798 2024-12-02T18:51:51.2140001 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Health Data Science Hoda Abbasizanjani 0000-0002-9575-4758 1 Stuart Bedston 2 Lucy Robinson 3 Matthew Curds 4 Ashley Akbari 0000-0003-0814-0801 5 68417__33485__84dd77791a4d4ec09c9491c318ce7fa3.pdf 68417.VoR.pdf 2025-02-04T11:21:10.9094577 Output 207668 application/pdf Version of Record true 2024 © The Authors. Open Access under CC BY 4.0. true eng https://creativecommons.org/licenses/by/4.0/deed.en
title Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data
spellingShingle Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data
Hoda Abbasizanjani
Stuart Bedston
Ashley Akbari
title_short Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data
title_full Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data
title_fullStr Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data
title_full_unstemmed Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data
title_sort Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data
author_id_str_mv 93dd7e747f3118a99566c68592a3ddcc
c79d07eaba5c9515c0df82b372b76a41
aa1b025ec0243f708bb5eb0a93d6fb52
author_id_fullname_str_mv 93dd7e747f3118a99566c68592a3ddcc_***_Hoda Abbasizanjani
c79d07eaba5c9515c0df82b372b76a41_***_Stuart Bedston
aa1b025ec0243f708bb5eb0a93d6fb52_***_Ashley Akbari
author Hoda Abbasizanjani
Stuart Bedston
Ashley Akbari
author2 Hoda Abbasizanjani
Stuart Bedston
Lucy Robinson
Matthew Curds
Ashley Akbari
format Conference Paper/Proceeding/Abstract
container_title International Journal of Population Data Science
container_volume 9
container_issue 5
publishDate 2024
institution Swansea University
issn 2399-4908
doi_str_mv 10.23889/ijpds.v9i5.2611
publisher Swansea University
college_str Faculty of Medicine, Health and Life Sciences
hierarchytype
hierarchy_top_id facultyofmedicinehealthandlifesciences
hierarchy_top_title Faculty of Medicine, Health and Life Sciences
hierarchy_parent_id facultyofmedicinehealthandlifesciences
hierarchy_parent_title Faculty of Medicine, Health and Life Sciences
department_str Swansea University Medical School - Health Data Science{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Health Data Science
document_store_str 1
active_str 0
published_date 2024-09-10T08:20:45Z
_version_ 1826647541772451840
score 11.054383