Conference Paper/Proceeding/Abstract 52 views 11 downloads
Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data
International Journal of Population Data Science, Volume: 9, Issue: 5
Swansea University Authors:
Hoda Abbasizanjani , Stuart Bedston, Ashley Akbari
DOI (Published version): 10.23889/ijpds.v9i5.2611
Abstract
Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data
Published in: | International Journal of Population Data Science |
---|---|
ISSN: | 2399-4908 |
Published: |
Swansea University
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa68417 |
first_indexed |
2025-01-30T16:02:05Z |
---|---|
last_indexed |
2025-02-04T14:29:27Z |
id |
cronfa68417 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-02-04T11:22:02.9024798</datestamp><bib-version>v2</bib-version><id>68417</id><entry>2024-12-02</entry><title>Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data</title><swanseaauthors><author><sid>93dd7e747f3118a99566c68592a3ddcc</sid><ORCID>0000-0002-9575-4758</ORCID><firstname>Hoda</firstname><surname>Abbasizanjani</surname><name>Hoda Abbasizanjani</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c79d07eaba5c9515c0df82b372b76a41</sid><firstname>Stuart</firstname><surname>Bedston</surname><name>Stuart Bedston</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>aa1b025ec0243f708bb5eb0a93d6fb52</sid><ORCID>0000-0003-0814-0801</ORCID><firstname>Ashley</firstname><surname>Akbari</surname><name>Ashley Akbari</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-12-02</date><deptcode>MEDS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>International Journal of Population Data Science</journal><volume>9</volume><journalNumber>5</journalNumber><paginationStart/><paginationEnd/><publisher>Swansea University</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2399-4908</issnElectronic><keywords/><publishedDay>10</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-09-10</publishedDate><doi>10.23889/ijpds.v9i5.2611</doi><url/><notes>Abstract</notes><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2025-02-04T11:22:02.9024798</lastEdited><Created>2024-12-02T18:51:51.2140001</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Health Data Science</level></path><authors><author><firstname>Hoda</firstname><surname>Abbasizanjani</surname><orcid>0000-0002-9575-4758</orcid><order>1</order></author><author><firstname>Stuart</firstname><surname>Bedston</surname><order>2</order></author><author><firstname>Lucy</firstname><surname>Robinson</surname><order>3</order></author><author><firstname>Matthew</firstname><surname>Curds</surname><order>4</order></author><author><firstname>Ashley</firstname><surname>Akbari</surname><orcid>0000-0003-0814-0801</orcid><order>5</order></author></authors><documents><document><filename>68417__33485__84dd77791a4d4ec09c9491c318ce7fa3.pdf</filename><originalFilename>68417.VoR.pdf</originalFilename><uploaded>2025-02-04T11:21:10.9094577</uploaded><type>Output</type><contentLength>207668</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>2024 © The Authors. Open Access under CC BY 4.0.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2025-02-04T11:22:02.9024798 v2 68417 2024-12-02 Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data 93dd7e747f3118a99566c68592a3ddcc 0000-0002-9575-4758 Hoda Abbasizanjani Hoda Abbasizanjani true false c79d07eaba5c9515c0df82b372b76a41 Stuart Bedston Stuart Bedston true false aa1b025ec0243f708bb5eb0a93d6fb52 0000-0003-0814-0801 Ashley Akbari Ashley Akbari true false 2024-12-02 MEDS Conference Paper/Proceeding/Abstract International Journal of Population Data Science 9 5 Swansea University 2399-4908 10 9 2024 2024-09-10 10.23889/ijpds.v9i5.2611 Abstract COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University 2025-02-04T11:22:02.9024798 2024-12-02T18:51:51.2140001 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Health Data Science Hoda Abbasizanjani 0000-0002-9575-4758 1 Stuart Bedston 2 Lucy Robinson 3 Matthew Curds 4 Ashley Akbari 0000-0003-0814-0801 5 68417__33485__84dd77791a4d4ec09c9491c318ce7fa3.pdf 68417.VoR.pdf 2025-02-04T11:21:10.9094577 Output 207668 application/pdf Version of Record true 2024 © The Authors. Open Access under CC BY 4.0. true eng https://creativecommons.org/licenses/by/4.0/deed.en |
title |
Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data |
spellingShingle |
Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data Hoda Abbasizanjani Stuart Bedston Ashley Akbari |
title_short |
Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data |
title_full |
Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data |
title_fullStr |
Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data |
title_full_unstemmed |
Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data |
title_sort |
Identifying patterns of Long-COVID diagnosis pathways: a Latent Class Analysis of Welsh clinical data |
author_id_str_mv |
93dd7e747f3118a99566c68592a3ddcc c79d07eaba5c9515c0df82b372b76a41 aa1b025ec0243f708bb5eb0a93d6fb52 |
author_id_fullname_str_mv |
93dd7e747f3118a99566c68592a3ddcc_***_Hoda Abbasizanjani c79d07eaba5c9515c0df82b372b76a41_***_Stuart Bedston aa1b025ec0243f708bb5eb0a93d6fb52_***_Ashley Akbari |
author |
Hoda Abbasizanjani Stuart Bedston Ashley Akbari |
author2 |
Hoda Abbasizanjani Stuart Bedston Lucy Robinson Matthew Curds Ashley Akbari |
format |
Conference Paper/Proceeding/Abstract |
container_title |
International Journal of Population Data Science |
container_volume |
9 |
container_issue |
5 |
publishDate |
2024 |
institution |
Swansea University |
issn |
2399-4908 |
doi_str_mv |
10.23889/ijpds.v9i5.2611 |
publisher |
Swansea University |
college_str |
Faculty of Medicine, Health and Life Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofmedicinehealthandlifesciences |
hierarchy_top_title |
Faculty of Medicine, Health and Life Sciences |
hierarchy_parent_id |
facultyofmedicinehealthandlifesciences |
hierarchy_parent_title |
Faculty of Medicine, Health and Life Sciences |
department_str |
Swansea University Medical School - Health Data Science{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Health Data Science |
document_store_str |
1 |
active_str |
0 |
published_date |
2024-09-10T08:20:45Z |
_version_ |
1826647541772451840 |
score |
11.054383 |