Journal article 42 views
Machine Learning Aided Modeling of Granular Materials: A Review
Archives of Computational Methods in Engineering
Swansea University Authors: MENGQI WANG, Yuntian Feng
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1007/s11831-024-10199-z
Abstract
Artificial intelligence (AI) has become a buzzy word since Google’s AlphaGo beat a world champion in 2017. In the past five years, machine learning as a subset of the broader category of AI has obtained considerable attention in the research community of granular materials. This work offers a detail...
Published in: | Archives of Computational Methods in Engineering |
---|---|
ISSN: | 1134-3060 1886-1784 |
Published: |
Springer Science and Business Media LLC
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa68074 |
Abstract: |
Artificial intelligence (AI) has become a buzzy word since Google’s AlphaGo beat a world champion in 2017. In the past five years, machine learning as a subset of the broader category of AI has obtained considerable attention in the research community of granular materials. This work offers a detailed review of the recent advances in machine learning-aided studies of granular materials from the particle-particle interaction at the grain level to the macroscopic simulations of granular flow. This work will start with the application of machine learning in the microscopic particle-particle interaction and associated contact models. Then, different neural networks for learning the constitutive behaviour of granular materials will be reviewed and compared. Finally, the macroscopic simulations of practical engineering or boundary value problems based on the combination of neural networks and numerical methods are discussed. We hope readers will have a clear idea of the development of machine learning-aided modelling of granular materials via this comprehensive review work. |
---|---|
College: |
Faculty of Science and Engineering |
Funders: |
Swansea University |