Journal article 97 views
Insight into Interfacial Heat Transfer of β-Ga2O3/Diamond Heterostructures via the Machine Learning Potential
Zhanpeng Sun,
Dongliang Zhang,
Zijun Qi,
Qijun Wang,
Xiang Sun,
Kang Liang,
Fang Dong,
Yuan Zhao,
Diwei Zou,
Lijie Li ,
Gai Wu ,
Wei Shen,
Sheng Liu
ACS Applied Materials & Interfaces, Volume: 16, Issue: 24, Pages: 31666 - 31676
Swansea University Author: Lijie Li
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1021/acsami.3c19588
Abstract
Insight into Interfacial Heat Transfer of β-Ga2O3/Diamond Heterostructures via the Machine Learning Potential
Published in: | ACS Applied Materials & Interfaces |
---|---|
ISSN: | 1944-8244 1944-8252 |
Published: |
American Chemical Society (ACS)
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa68005 |
first_indexed |
2024-10-17T11:45:56Z |
---|---|
last_indexed |
2025-01-09T20:32:21Z |
id |
cronfa68005 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-12-19T15:28:00.5901031</datestamp><bib-version>v2</bib-version><id>68005</id><entry>2024-10-17</entry><title>Insight into Interfacial Heat Transfer of β-Ga2O3/Diamond Heterostructures via the Machine Learning Potential</title><swanseaauthors><author><sid>ed2c658b77679a28e4c1dcf95af06bd6</sid><ORCID>0000-0003-4630-7692</ORCID><firstname>Lijie</firstname><surname>Li</surname><name>Lijie Li</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-10-17</date><deptcode>ACEM</deptcode><abstract/><type>Journal Article</type><journal>ACS Applied Materials &amp; Interfaces</journal><volume>16</volume><journalNumber>24</journalNumber><paginationStart>31666</paginationStart><paginationEnd>31676</paginationEnd><publisher>American Chemical Society (ACS)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1944-8244</issnPrint><issnElectronic>1944-8252</issnElectronic><keywords>β-Ga2O3/diamond heterostructure; interfacial heat transfer; molecular dynamics; machine learning potential; thermal boundary resistance</keywords><publishedDay>19</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-06-19</publishedDate><doi>10.1021/acsami.3c19588</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2024-12-19T15:28:00.5901031</lastEdited><Created>2024-10-17T12:26:43.2748963</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>Zhanpeng</firstname><surname>Sun</surname><order>1</order></author><author><firstname>Dongliang</firstname><surname>Zhang</surname><order>2</order></author><author><firstname>Zijun</firstname><surname>Qi</surname><order>3</order></author><author><firstname>Qijun</firstname><surname>Wang</surname><order>4</order></author><author><firstname>Xiang</firstname><surname>Sun</surname><order>5</order></author><author><firstname>Kang</firstname><surname>Liang</surname><order>6</order></author><author><firstname>Fang</firstname><surname>Dong</surname><order>7</order></author><author><firstname>Yuan</firstname><surname>Zhao</surname><order>8</order></author><author><firstname>Diwei</firstname><surname>Zou</surname><order>9</order></author><author><firstname>Lijie</firstname><surname>Li</surname><orcid>0000-0003-4630-7692</orcid><order>10</order></author><author><firstname>Gai</firstname><surname>Wu</surname><orcid>0000-0002-9726-6328</orcid><order>11</order></author><author><firstname>Wei</firstname><surname>Shen</surname><order>12</order></author><author><firstname>Sheng</firstname><surname>Liu</surname><orcid>0000-0001-6033-078x</orcid><order>13</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2024-12-19T15:28:00.5901031 v2 68005 2024-10-17 Insight into Interfacial Heat Transfer of β-Ga2O3/Diamond Heterostructures via the Machine Learning Potential ed2c658b77679a28e4c1dcf95af06bd6 0000-0003-4630-7692 Lijie Li Lijie Li true false 2024-10-17 ACEM Journal Article ACS Applied Materials & Interfaces 16 24 31666 31676 American Chemical Society (ACS) 1944-8244 1944-8252 β-Ga2O3/diamond heterostructure; interfacial heat transfer; molecular dynamics; machine learning potential; thermal boundary resistance 19 6 2024 2024-06-19 10.1021/acsami.3c19588 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2024-12-19T15:28:00.5901031 2024-10-17T12:26:43.2748963 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering Zhanpeng Sun 1 Dongliang Zhang 2 Zijun Qi 3 Qijun Wang 4 Xiang Sun 5 Kang Liang 6 Fang Dong 7 Yuan Zhao 8 Diwei Zou 9 Lijie Li 0000-0003-4630-7692 10 Gai Wu 0000-0002-9726-6328 11 Wei Shen 12 Sheng Liu 0000-0001-6033-078x 13 |
title |
Insight into Interfacial Heat Transfer of β-Ga2O3/Diamond Heterostructures via the Machine Learning Potential |
spellingShingle |
Insight into Interfacial Heat Transfer of β-Ga2O3/Diamond Heterostructures via the Machine Learning Potential Lijie Li |
title_short |
Insight into Interfacial Heat Transfer of β-Ga2O3/Diamond Heterostructures via the Machine Learning Potential |
title_full |
Insight into Interfacial Heat Transfer of β-Ga2O3/Diamond Heterostructures via the Machine Learning Potential |
title_fullStr |
Insight into Interfacial Heat Transfer of β-Ga2O3/Diamond Heterostructures via the Machine Learning Potential |
title_full_unstemmed |
Insight into Interfacial Heat Transfer of β-Ga2O3/Diamond Heterostructures via the Machine Learning Potential |
title_sort |
Insight into Interfacial Heat Transfer of β-Ga2O3/Diamond Heterostructures via the Machine Learning Potential |
author_id_str_mv |
ed2c658b77679a28e4c1dcf95af06bd6 |
author_id_fullname_str_mv |
ed2c658b77679a28e4c1dcf95af06bd6_***_Lijie Li |
author |
Lijie Li |
author2 |
Zhanpeng Sun Dongliang Zhang Zijun Qi Qijun Wang Xiang Sun Kang Liang Fang Dong Yuan Zhao Diwei Zou Lijie Li Gai Wu Wei Shen Sheng Liu |
format |
Journal article |
container_title |
ACS Applied Materials & Interfaces |
container_volume |
16 |
container_issue |
24 |
container_start_page |
31666 |
publishDate |
2024 |
institution |
Swansea University |
issn |
1944-8244 1944-8252 |
doi_str_mv |
10.1021/acsami.3c19588 |
publisher |
American Chemical Society (ACS) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering |
document_store_str |
0 |
active_str |
0 |
published_date |
2024-06-19T20:35:19Z |
_version_ |
1821348535189110784 |
score |
11.04748 |