No Cover Image

Journal article 57 views

Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage

Rui Tan Orcid Logo, Anqi Wang Orcid Logo, Richard Malpass-Evans, Rhodri Williams, Evan Wenbo Zhao, Tao Liu, Chunchun Ye, Xiaoqun Zhou, Barbara Primera Darwich, Zhiyu Fan, Lukas Turcani Orcid Logo, Edward Jackson Orcid Logo, Linjiang Chen, Samantha Y. Chong Orcid Logo, Tao Li, Kim E. Jelfs, Andrew I. Cooper, Nigel P. Brandon, Clare P. Grey, Neil B. McKeown Orcid Logo, Qilei Song Orcid Logo

Nature Materials, Volume: 19, Issue: 2, Pages: 195 - 202

Swansea University Author: Rui Tan Orcid Logo

Full text not available from this repository: check for access using links below.

Abstract

Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive memb...

Full description

Published in: Nature Materials
ISSN: 1476-1122 1476-4660
Published: Springer Science and Business Media LLC 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa67824
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2024-10-16T14:24:06Z
last_indexed 2024-10-16T14:24:06Z
id cronfa67824
recordtype SURis
fullrecord <?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>67824</id><entry>2024-09-25</entry><title>Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage</title><swanseaauthors><author><sid>774c33a0a76a9152ca86a156b5ae26ff</sid><ORCID>0009-0001-9278-7327</ORCID><firstname>Rui</firstname><surname>Tan</surname><name>Rui Tan</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-09-25</date><deptcode>EAAS</deptcode><abstract>Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive membranes with well-defined pore architectures. Here, we report a new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules. These membranes, based on polymers of intrinsic microporosity containing Tröger’s base or amidoxime groups, demonstrate that exquisite control over subnanometre pore structure, the introduction of hydrophilic functional groups and thickness control all play important roles in achieving fast ion transport combined with high molecular selectivity. These membranes enable aqueous organic flow batteries with high energy efficiency and high capacity retention, suggesting their utility for a variety of energy-related devices and water purification processes.</abstract><type>Journal Article</type><journal>Nature Materials</journal><volume>19</volume><journalNumber>2</journalNumber><paginationStart>195</paginationStart><paginationEnd>202</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1476-1122</issnPrint><issnElectronic>1476-4660</issnElectronic><keywords/><publishedDay>2</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-02-02</publishedDate><doi>10.1038/s41563-019-0536-8</doi><url/><notes>An Author Correction to this article was published on 22 December 2019, available at https://doi.org/10.1038/s41563-019-0593-z</notes><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2024-10-16T15:28:07.2887293</lastEdited><Created>2024-09-25T21:39:02.4871795</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Rui</firstname><surname>Tan</surname><orcid>0009-0001-9278-7327</orcid><order>1</order></author><author><firstname>Anqi</firstname><surname>Wang</surname><orcid>0000-0003-3409-823x</orcid><order>2</order></author><author><firstname>Richard</firstname><surname>Malpass-Evans</surname><order>3</order></author><author><firstname>Rhodri</firstname><surname>Williams</surname><order>4</order></author><author><firstname>Evan Wenbo</firstname><surname>Zhao</surname><order>5</order></author><author><firstname>Tao</firstname><surname>Liu</surname><order>6</order></author><author><firstname>Chunchun</firstname><surname>Ye</surname><order>7</order></author><author><firstname>Xiaoqun</firstname><surname>Zhou</surname><order>8</order></author><author><firstname>Barbara Primera</firstname><surname>Darwich</surname><order>9</order></author><author><firstname>Zhiyu</firstname><surname>Fan</surname><order>10</order></author><author><firstname>Lukas</firstname><surname>Turcani</surname><orcid>0000-0001-8731-9839</orcid><order>11</order></author><author><firstname>Edward</firstname><surname>Jackson</surname><orcid>0000-0003-3272-9229</orcid><order>12</order></author><author><firstname>Linjiang</firstname><surname>Chen</surname><order>13</order></author><author><firstname>Samantha Y.</firstname><surname>Chong</surname><orcid>0000-0002-3095-875x</orcid><order>14</order></author><author><firstname>Tao</firstname><surname>Li</surname><order>15</order></author><author><firstname>Kim E.</firstname><surname>Jelfs</surname><order>16</order></author><author><firstname>Andrew I.</firstname><surname>Cooper</surname><order>17</order></author><author><firstname>Nigel P.</firstname><surname>Brandon</surname><order>18</order></author><author><firstname>Clare P.</firstname><surname>Grey</surname><order>19</order></author><author><firstname>Neil B.</firstname><surname>McKeown</surname><orcid>0000-0002-6027-261x</orcid><order>20</order></author><author><firstname>Qilei</firstname><surname>Song</surname><orcid>0000-0001-8570-3626</orcid><order>21</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling v2 67824 2024-09-25 Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage 774c33a0a76a9152ca86a156b5ae26ff 0009-0001-9278-7327 Rui Tan Rui Tan true false 2024-09-25 EAAS Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive membranes with well-defined pore architectures. Here, we report a new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules. These membranes, based on polymers of intrinsic microporosity containing Tröger’s base or amidoxime groups, demonstrate that exquisite control over subnanometre pore structure, the introduction of hydrophilic functional groups and thickness control all play important roles in achieving fast ion transport combined with high molecular selectivity. These membranes enable aqueous organic flow batteries with high energy efficiency and high capacity retention, suggesting their utility for a variety of energy-related devices and water purification processes. Journal Article Nature Materials 19 2 195 202 Springer Science and Business Media LLC 1476-1122 1476-4660 2 2 2020 2020-02-02 10.1038/s41563-019-0536-8 An Author Correction to this article was published on 22 December 2019, available at https://doi.org/10.1038/s41563-019-0593-z COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2024-10-16T15:28:07.2887293 2024-09-25T21:39:02.4871795 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Rui Tan 0009-0001-9278-7327 1 Anqi Wang 0000-0003-3409-823x 2 Richard Malpass-Evans 3 Rhodri Williams 4 Evan Wenbo Zhao 5 Tao Liu 6 Chunchun Ye 7 Xiaoqun Zhou 8 Barbara Primera Darwich 9 Zhiyu Fan 10 Lukas Turcani 0000-0001-8731-9839 11 Edward Jackson 0000-0003-3272-9229 12 Linjiang Chen 13 Samantha Y. Chong 0000-0002-3095-875x 14 Tao Li 15 Kim E. Jelfs 16 Andrew I. Cooper 17 Nigel P. Brandon 18 Clare P. Grey 19 Neil B. McKeown 0000-0002-6027-261x 20 Qilei Song 0000-0001-8570-3626 21
title Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage
spellingShingle Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage
Rui Tan
title_short Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage
title_full Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage
title_fullStr Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage
title_full_unstemmed Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage
title_sort Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage
author_id_str_mv 774c33a0a76a9152ca86a156b5ae26ff
author_id_fullname_str_mv 774c33a0a76a9152ca86a156b5ae26ff_***_Rui Tan
author Rui Tan
author2 Rui Tan
Anqi Wang
Richard Malpass-Evans
Rhodri Williams
Evan Wenbo Zhao
Tao Liu
Chunchun Ye
Xiaoqun Zhou
Barbara Primera Darwich
Zhiyu Fan
Lukas Turcani
Edward Jackson
Linjiang Chen
Samantha Y. Chong
Tao Li
Kim E. Jelfs
Andrew I. Cooper
Nigel P. Brandon
Clare P. Grey
Neil B. McKeown
Qilei Song
format Journal article
container_title Nature Materials
container_volume 19
container_issue 2
container_start_page 195
publishDate 2020
institution Swansea University
issn 1476-1122
1476-4660
doi_str_mv 10.1038/s41563-019-0536-8
publisher Springer Science and Business Media LLC
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering
document_store_str 0
active_str 0
description Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive membranes with well-defined pore architectures. Here, we report a new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules. These membranes, based on polymers of intrinsic microporosity containing Tröger’s base or amidoxime groups, demonstrate that exquisite control over subnanometre pore structure, the introduction of hydrophilic functional groups and thickness control all play important roles in achieving fast ion transport combined with high molecular selectivity. These membranes enable aqueous organic flow batteries with high energy efficiency and high capacity retention, suggesting their utility for a variety of energy-related devices and water purification processes.
published_date 2020-02-02T15:28:05Z
_version_ 1813081107428540416
score 11.033506