Journal article 79 views
Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage
Rui Tan ,
Anqi Wang ,
Richard Malpass-Evans,
Rhodri Williams,
Evan Wenbo Zhao,
Tao Liu,
Chunchun Ye,
Xiaoqun Zhou,
Barbara Primera Darwich,
Zhiyu Fan,
Lukas Turcani ,
Edward Jackson ,
Linjiang Chen,
Samantha Y. Chong ,
Tao Li,
Kim E. Jelfs,
Andrew I. Cooper,
Nigel P. Brandon,
Clare P. Grey,
Neil B. McKeown ,
Qilei Song
Nature Materials, Volume: 19, Issue: 2, Pages: 195 - 202
Swansea University Author: Rui Tan
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1038/s41563-019-0536-8
Abstract
Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive memb...
Published in: | Nature Materials |
---|---|
ISSN: | 1476-1122 1476-4660 |
Published: |
Springer Science and Business Media LLC
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa67824 |
first_indexed |
2024-10-16T14:24:06Z |
---|---|
last_indexed |
2024-11-25T14:20:54Z |
id |
cronfa67824 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-10-16T15:28:07.2887293</datestamp><bib-version>v2</bib-version><id>67824</id><entry>2024-09-25</entry><title>Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage</title><swanseaauthors><author><sid>774c33a0a76a9152ca86a156b5ae26ff</sid><ORCID>0009-0001-9278-7327</ORCID><firstname>Rui</firstname><surname>Tan</surname><name>Rui Tan</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-09-25</date><deptcode>EAAS</deptcode><abstract>Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive membranes with well-defined pore architectures. Here, we report a new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules. These membranes, based on polymers of intrinsic microporosity containing Tröger’s base or amidoxime groups, demonstrate that exquisite control over subnanometre pore structure, the introduction of hydrophilic functional groups and thickness control all play important roles in achieving fast ion transport combined with high molecular selectivity. These membranes enable aqueous organic flow batteries with high energy efficiency and high capacity retention, suggesting their utility for a variety of energy-related devices and water purification processes.</abstract><type>Journal Article</type><journal>Nature Materials</journal><volume>19</volume><journalNumber>2</journalNumber><paginationStart>195</paginationStart><paginationEnd>202</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1476-1122</issnPrint><issnElectronic>1476-4660</issnElectronic><keywords/><publishedDay>2</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-02-02</publishedDate><doi>10.1038/s41563-019-0536-8</doi><url/><notes>An Author Correction to this article was published on 22 December 2019, available at https://doi.org/10.1038/s41563-019-0593-z</notes><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2024-10-16T15:28:07.2887293</lastEdited><Created>2024-09-25T21:39:02.4871795</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Rui</firstname><surname>Tan</surname><orcid>0009-0001-9278-7327</orcid><order>1</order></author><author><firstname>Anqi</firstname><surname>Wang</surname><orcid>0000-0003-3409-823x</orcid><order>2</order></author><author><firstname>Richard</firstname><surname>Malpass-Evans</surname><order>3</order></author><author><firstname>Rhodri</firstname><surname>Williams</surname><order>4</order></author><author><firstname>Evan Wenbo</firstname><surname>Zhao</surname><order>5</order></author><author><firstname>Tao</firstname><surname>Liu</surname><order>6</order></author><author><firstname>Chunchun</firstname><surname>Ye</surname><order>7</order></author><author><firstname>Xiaoqun</firstname><surname>Zhou</surname><order>8</order></author><author><firstname>Barbara Primera</firstname><surname>Darwich</surname><order>9</order></author><author><firstname>Zhiyu</firstname><surname>Fan</surname><order>10</order></author><author><firstname>Lukas</firstname><surname>Turcani</surname><orcid>0000-0001-8731-9839</orcid><order>11</order></author><author><firstname>Edward</firstname><surname>Jackson</surname><orcid>0000-0003-3272-9229</orcid><order>12</order></author><author><firstname>Linjiang</firstname><surname>Chen</surname><order>13</order></author><author><firstname>Samantha Y.</firstname><surname>Chong</surname><orcid>0000-0002-3095-875x</orcid><order>14</order></author><author><firstname>Tao</firstname><surname>Li</surname><order>15</order></author><author><firstname>Kim E.</firstname><surname>Jelfs</surname><order>16</order></author><author><firstname>Andrew I.</firstname><surname>Cooper</surname><order>17</order></author><author><firstname>Nigel P.</firstname><surname>Brandon</surname><order>18</order></author><author><firstname>Clare P.</firstname><surname>Grey</surname><order>19</order></author><author><firstname>Neil B.</firstname><surname>McKeown</surname><orcid>0000-0002-6027-261x</orcid><order>20</order></author><author><firstname>Qilei</firstname><surname>Song</surname><orcid>0000-0001-8570-3626</orcid><order>21</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2024-10-16T15:28:07.2887293 v2 67824 2024-09-25 Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage 774c33a0a76a9152ca86a156b5ae26ff 0009-0001-9278-7327 Rui Tan Rui Tan true false 2024-09-25 EAAS Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive membranes with well-defined pore architectures. Here, we report a new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules. These membranes, based on polymers of intrinsic microporosity containing Tröger’s base or amidoxime groups, demonstrate that exquisite control over subnanometre pore structure, the introduction of hydrophilic functional groups and thickness control all play important roles in achieving fast ion transport combined with high molecular selectivity. These membranes enable aqueous organic flow batteries with high energy efficiency and high capacity retention, suggesting their utility for a variety of energy-related devices and water purification processes. Journal Article Nature Materials 19 2 195 202 Springer Science and Business Media LLC 1476-1122 1476-4660 2 2 2020 2020-02-02 10.1038/s41563-019-0536-8 An Author Correction to this article was published on 22 December 2019, available at https://doi.org/10.1038/s41563-019-0593-z COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2024-10-16T15:28:07.2887293 2024-09-25T21:39:02.4871795 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Rui Tan 0009-0001-9278-7327 1 Anqi Wang 0000-0003-3409-823x 2 Richard Malpass-Evans 3 Rhodri Williams 4 Evan Wenbo Zhao 5 Tao Liu 6 Chunchun Ye 7 Xiaoqun Zhou 8 Barbara Primera Darwich 9 Zhiyu Fan 10 Lukas Turcani 0000-0001-8731-9839 11 Edward Jackson 0000-0003-3272-9229 12 Linjiang Chen 13 Samantha Y. Chong 0000-0002-3095-875x 14 Tao Li 15 Kim E. Jelfs 16 Andrew I. Cooper 17 Nigel P. Brandon 18 Clare P. Grey 19 Neil B. McKeown 0000-0002-6027-261x 20 Qilei Song 0000-0001-8570-3626 21 |
title |
Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage |
spellingShingle |
Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage Rui Tan |
title_short |
Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage |
title_full |
Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage |
title_fullStr |
Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage |
title_full_unstemmed |
Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage |
title_sort |
Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage |
author_id_str_mv |
774c33a0a76a9152ca86a156b5ae26ff |
author_id_fullname_str_mv |
774c33a0a76a9152ca86a156b5ae26ff_***_Rui Tan |
author |
Rui Tan |
author2 |
Rui Tan Anqi Wang Richard Malpass-Evans Rhodri Williams Evan Wenbo Zhao Tao Liu Chunchun Ye Xiaoqun Zhou Barbara Primera Darwich Zhiyu Fan Lukas Turcani Edward Jackson Linjiang Chen Samantha Y. Chong Tao Li Kim E. Jelfs Andrew I. Cooper Nigel P. Brandon Clare P. Grey Neil B. McKeown Qilei Song |
format |
Journal article |
container_title |
Nature Materials |
container_volume |
19 |
container_issue |
2 |
container_start_page |
195 |
publishDate |
2020 |
institution |
Swansea University |
issn |
1476-1122 1476-4660 |
doi_str_mv |
10.1038/s41563-019-0536-8 |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering |
document_store_str |
0 |
active_str |
0 |
description |
Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive membranes with well-defined pore architectures. Here, we report a new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules. These membranes, based on polymers of intrinsic microporosity containing Tröger’s base or amidoxime groups, demonstrate that exquisite control over subnanometre pore structure, the introduction of hydrophilic functional groups and thickness control all play important roles in achieving fast ion transport combined with high molecular selectivity. These membranes enable aqueous organic flow batteries with high energy efficiency and high capacity retention, suggesting their utility for a variety of energy-related devices and water purification processes. |
published_date |
2020-02-02T05:39:34Z |
_version_ |
1821382777223774208 |
score |
11.3749895 |