Journal article 77 views
Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes
Chunchun Ye,
Rui Tan ,
Anqi Wang,
Jie Chen,
Bibiana Comesaña Gándara,
Charlotte Breakwell,
Alberto Alvarez‐Fernandez,
Zhiyu Fan,
Jiaqi Weng,
C. Grazia Bezzu,
Stefan Guldin,
Nigel P. Brandon,
Anthony R. Kucernak,
Kim E. Jelfs,
Neil B. McKeown ,
Qilei Song
Angewandte Chemie International Edition, Volume: 61, Issue: 38
Swansea University Author: Rui Tan
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1002/anie.202207580
Abstract
Redox flow batteries (RFBs) based on aqueous organic electrolytes are a promising technology for safe and cost-effective large-scale electrical energy storage. Membrane separators are a key component in RFBs, allowing fast conduction of charge-carrier ions but minimizing the cross-over of redox-acti...
Published in: | Angewandte Chemie International Edition |
---|---|
ISSN: | 1433-7851 1521-3773 |
Published: |
Wiley
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa67808 |
first_indexed |
2024-10-18T10:05:02Z |
---|---|
last_indexed |
2024-11-25T14:20:53Z |
id |
cronfa67808 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-10-18T12:04:53.5195282</datestamp><bib-version>v2</bib-version><id>67808</id><entry>2024-09-25</entry><title>Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes</title><swanseaauthors><author><sid>774c33a0a76a9152ca86a156b5ae26ff</sid><ORCID>0009-0001-9278-7327</ORCID><firstname>Rui</firstname><surname>Tan</surname><name>Rui Tan</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-09-25</date><deptcode>EAAS</deptcode><abstract>Redox flow batteries (RFBs) based on aqueous organic electrolytes are a promising technology for safe and cost-effective large-scale electrical energy storage. Membrane separators are a key component in RFBs, allowing fast conduction of charge-carrier ions but minimizing the cross-over of redox-active species. Here, we report the molecular engineering of amidoxime-functionalized Polymers of Intrinsic Microporosity (AO-PIMs) by tuning their polymer chain topology and pore architecture to optimize membrane ion transport functions. AO-PIM membranes are integrated with three emerging aqueous organic flow battery chemistries, and the synergetic integration of ion-selective membranes with molecular engineered organic molecules in neutral-pH electrolytes leads to significantly enhanced cycling stability.</abstract><type>Journal Article</type><journal>Angewandte Chemie International Edition</journal><volume>61</volume><journalNumber>38</journalNumber><paginationStart/><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1433-7851</issnPrint><issnElectronic>1521-3773</issnElectronic><keywords>Energy Storage; Ion-Exchange Membranes; Microporous Polymers; Redox Flow Batteries; Separation Membranes</keywords><publishedDay>19</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-09-19</publishedDate><doi>10.1002/anie.202207580</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>HORIZON EUROPE European Research Council. Grant Numbers: 851272, 758370
Engineering and Physical Sciences Research Council. Grant Number: EP/V047078/1
Defense Threat Reduction Agency. Grant Number: HDTRA1-18-1-0054</funders><projectreference/><lastEdited>2024-10-18T12:04:53.5195282</lastEdited><Created>2024-09-25T21:32:50.6284519</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Chunchun</firstname><surname>Ye</surname><order>1</order></author><author><firstname>Rui</firstname><surname>Tan</surname><orcid>0009-0001-9278-7327</orcid><order>2</order></author><author><firstname>Anqi</firstname><surname>Wang</surname><order>3</order></author><author><firstname>Jie</firstname><surname>Chen</surname><order>4</order></author><author><firstname>Bibiana Comesaña</firstname><surname>Gándara</surname><order>5</order></author><author><firstname>Charlotte</firstname><surname>Breakwell</surname><order>6</order></author><author><firstname>Alberto</firstname><surname>Alvarez‐Fernandez</surname><order>7</order></author><author><firstname>Zhiyu</firstname><surname>Fan</surname><order>8</order></author><author><firstname>Jiaqi</firstname><surname>Weng</surname><order>9</order></author><author><firstname>C. Grazia</firstname><surname>Bezzu</surname><order>10</order></author><author><firstname>Stefan</firstname><surname>Guldin</surname><order>11</order></author><author><firstname>Nigel P.</firstname><surname>Brandon</surname><order>12</order></author><author><firstname>Anthony R.</firstname><surname>Kucernak</surname><order>13</order></author><author><firstname>Kim E.</firstname><surname>Jelfs</surname><order>14</order></author><author><firstname>Neil B.</firstname><surname>McKeown</surname><orcid>0000-0002-6027-261x</orcid><order>15</order></author><author><firstname>Qilei</firstname><surname>Song</surname><orcid>0000-0001-8570-3626</orcid><order>16</order></author></authors><documents><document><filename>67808__32628__f69d31a3ab5e463699ed66d4b3d38eb9.pdf</filename><originalFilename>67808.VoR.pdf</originalFilename><uploaded>2024-10-18T11:05:56.3753513</uploaded><type>Output</type><contentLength>15072474</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2024-10-18T12:04:53.5195282 v2 67808 2024-09-25 Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes 774c33a0a76a9152ca86a156b5ae26ff 0009-0001-9278-7327 Rui Tan Rui Tan true false 2024-09-25 EAAS Redox flow batteries (RFBs) based on aqueous organic electrolytes are a promising technology for safe and cost-effective large-scale electrical energy storage. Membrane separators are a key component in RFBs, allowing fast conduction of charge-carrier ions but minimizing the cross-over of redox-active species. Here, we report the molecular engineering of amidoxime-functionalized Polymers of Intrinsic Microporosity (AO-PIMs) by tuning their polymer chain topology and pore architecture to optimize membrane ion transport functions. AO-PIM membranes are integrated with three emerging aqueous organic flow battery chemistries, and the synergetic integration of ion-selective membranes with molecular engineered organic molecules in neutral-pH electrolytes leads to significantly enhanced cycling stability. Journal Article Angewandte Chemie International Edition 61 38 Wiley 1433-7851 1521-3773 Energy Storage; Ion-Exchange Membranes; Microporous Polymers; Redox Flow Batteries; Separation Membranes 19 9 2022 2022-09-19 10.1002/anie.202207580 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University Another institution paid the OA fee HORIZON EUROPE European Research Council. Grant Numbers: 851272, 758370 Engineering and Physical Sciences Research Council. Grant Number: EP/V047078/1 Defense Threat Reduction Agency. Grant Number: HDTRA1-18-1-0054 2024-10-18T12:04:53.5195282 2024-09-25T21:32:50.6284519 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Chunchun Ye 1 Rui Tan 0009-0001-9278-7327 2 Anqi Wang 3 Jie Chen 4 Bibiana Comesaña Gándara 5 Charlotte Breakwell 6 Alberto Alvarez‐Fernandez 7 Zhiyu Fan 8 Jiaqi Weng 9 C. Grazia Bezzu 10 Stefan Guldin 11 Nigel P. Brandon 12 Anthony R. Kucernak 13 Kim E. Jelfs 14 Neil B. McKeown 0000-0002-6027-261x 15 Qilei Song 0000-0001-8570-3626 16 67808__32628__f69d31a3ab5e463699ed66d4b3d38eb9.pdf 67808.VoR.pdf 2024-10-18T11:05:56.3753513 Output 15072474 application/pdf Version of Record true © 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License. true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes |
spellingShingle |
Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes Rui Tan |
title_short |
Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes |
title_full |
Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes |
title_fullStr |
Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes |
title_full_unstemmed |
Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes |
title_sort |
Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes |
author_id_str_mv |
774c33a0a76a9152ca86a156b5ae26ff |
author_id_fullname_str_mv |
774c33a0a76a9152ca86a156b5ae26ff_***_Rui Tan |
author |
Rui Tan |
author2 |
Chunchun Ye Rui Tan Anqi Wang Jie Chen Bibiana Comesaña Gándara Charlotte Breakwell Alberto Alvarez‐Fernandez Zhiyu Fan Jiaqi Weng C. Grazia Bezzu Stefan Guldin Nigel P. Brandon Anthony R. Kucernak Kim E. Jelfs Neil B. McKeown Qilei Song |
format |
Journal article |
container_title |
Angewandte Chemie International Edition |
container_volume |
61 |
container_issue |
38 |
publishDate |
2022 |
institution |
Swansea University |
issn |
1433-7851 1521-3773 |
doi_str_mv |
10.1002/anie.202207580 |
publisher |
Wiley |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering |
document_store_str |
0 |
active_str |
0 |
description |
Redox flow batteries (RFBs) based on aqueous organic electrolytes are a promising technology for safe and cost-effective large-scale electrical energy storage. Membrane separators are a key component in RFBs, allowing fast conduction of charge-carrier ions but minimizing the cross-over of redox-active species. Here, we report the molecular engineering of amidoxime-functionalized Polymers of Intrinsic Microporosity (AO-PIMs) by tuning their polymer chain topology and pore architecture to optimize membrane ion transport functions. AO-PIM membranes are integrated with three emerging aqueous organic flow battery chemistries, and the synergetic integration of ion-selective membranes with molecular engineered organic molecules in neutral-pH electrolytes leads to significantly enhanced cycling stability. |
published_date |
2022-09-19T05:39:32Z |
_version_ |
1821382774935781376 |
score |
11.04748 |