No Cover Image

Journal article 57 views 14 downloads

Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes

Chunchun Ye, Rui Tan Orcid Logo, Anqi Wang, Jie Chen, Bibiana Comesaña Gándara, Charlotte Breakwell, Alberto Alvarez‐Fernandez, Zhiyu Fan, Jiaqi Weng, C. Grazia Bezzu, Stefan Guldin, Nigel P. Brandon, Anthony R. Kucernak, Kim E. Jelfs, Neil B. McKeown Orcid Logo, Qilei Song Orcid Logo

Angewandte Chemie International Edition, Volume: 61, Issue: 38

Swansea University Author: Rui Tan Orcid Logo

  • 67808.VoR.pdf

    PDF | Version of Record

    © 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License.

    Download (14.37MB)

Check full text

DOI (Published version): 10.1002/anie.202207580

Abstract

Redox flow batteries (RFBs) based on aqueous organic electrolytes are a promising technology for safe and cost-effective large-scale electrical energy storage. Membrane separators are a key component in RFBs, allowing fast conduction of charge-carrier ions but minimizing the cross-over of redox-acti...

Full description

Published in: Angewandte Chemie International Edition
ISSN: 1433-7851 1521-3773
Published: Wiley 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa67808
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2024-10-18T10:05:02Z
last_indexed 2024-10-18T10:05:02Z
id cronfa67808
recordtype SURis
fullrecord <?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>67808</id><entry>2024-09-25</entry><title>Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes</title><swanseaauthors><author><sid>774c33a0a76a9152ca86a156b5ae26ff</sid><ORCID>0009-0001-9278-7327</ORCID><firstname>Rui</firstname><surname>Tan</surname><name>Rui Tan</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-09-25</date><deptcode>EAAS</deptcode><abstract>Redox flow batteries (RFBs) based on aqueous organic electrolytes are a promising technology for safe and cost-effective large-scale electrical energy storage. Membrane separators are a key component in RFBs, allowing fast conduction of charge-carrier ions but minimizing the cross-over of redox-active species. Here, we report the molecular engineering of amidoxime-functionalized Polymers of Intrinsic Microporosity (AO-PIMs) by tuning their polymer chain topology and pore architecture to optimize membrane ion transport functions. AO-PIM membranes are integrated with three emerging aqueous organic flow battery chemistries, and the synergetic integration of ion-selective membranes with molecular engineered organic molecules in neutral-pH electrolytes leads to significantly enhanced cycling stability.</abstract><type>Journal Article</type><journal>Angewandte Chemie International Edition</journal><volume>61</volume><journalNumber>38</journalNumber><paginationStart/><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1433-7851</issnPrint><issnElectronic>1521-3773</issnElectronic><keywords>Energy Storage; Ion-Exchange Membranes; Microporous Polymers; Redox Flow Batteries; Separation Membranes</keywords><publishedDay>19</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-09-19</publishedDate><doi>10.1002/anie.202207580</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>HORIZON EUROPE European Research Council. Grant Numbers: 851272, 758370 Engineering and Physical Sciences Research Council. Grant Number: EP/V047078/1 Defense Threat Reduction Agency. Grant Number: HDTRA1-18-1-0054</funders><projectreference/><lastEdited>2024-10-18T12:04:53.5195282</lastEdited><Created>2024-09-25T21:32:50.6284519</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Chunchun</firstname><surname>Ye</surname><order>1</order></author><author><firstname>Rui</firstname><surname>Tan</surname><orcid>0009-0001-9278-7327</orcid><order>2</order></author><author><firstname>Anqi</firstname><surname>Wang</surname><order>3</order></author><author><firstname>Jie</firstname><surname>Chen</surname><order>4</order></author><author><firstname>Bibiana Comesaña</firstname><surname>Gándara</surname><order>5</order></author><author><firstname>Charlotte</firstname><surname>Breakwell</surname><order>6</order></author><author><firstname>Alberto</firstname><surname>Alvarez‐Fernandez</surname><order>7</order></author><author><firstname>Zhiyu</firstname><surname>Fan</surname><order>8</order></author><author><firstname>Jiaqi</firstname><surname>Weng</surname><order>9</order></author><author><firstname>C. Grazia</firstname><surname>Bezzu</surname><order>10</order></author><author><firstname>Stefan</firstname><surname>Guldin</surname><order>11</order></author><author><firstname>Nigel P.</firstname><surname>Brandon</surname><order>12</order></author><author><firstname>Anthony R.</firstname><surname>Kucernak</surname><order>13</order></author><author><firstname>Kim E.</firstname><surname>Jelfs</surname><order>14</order></author><author><firstname>Neil B.</firstname><surname>McKeown</surname><orcid>0000-0002-6027-261x</orcid><order>15</order></author><author><firstname>Qilei</firstname><surname>Song</surname><orcid>0000-0001-8570-3626</orcid><order>16</order></author></authors><documents><document><filename>67808__32628__f69d31a3ab5e463699ed66d4b3d38eb9.pdf</filename><originalFilename>67808.VoR.pdf</originalFilename><uploaded>2024-10-18T11:05:56.3753513</uploaded><type>Output</type><contentLength>15072474</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling v2 67808 2024-09-25 Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes 774c33a0a76a9152ca86a156b5ae26ff 0009-0001-9278-7327 Rui Tan Rui Tan true false 2024-09-25 EAAS Redox flow batteries (RFBs) based on aqueous organic electrolytes are a promising technology for safe and cost-effective large-scale electrical energy storage. Membrane separators are a key component in RFBs, allowing fast conduction of charge-carrier ions but minimizing the cross-over of redox-active species. Here, we report the molecular engineering of amidoxime-functionalized Polymers of Intrinsic Microporosity (AO-PIMs) by tuning their polymer chain topology and pore architecture to optimize membrane ion transport functions. AO-PIM membranes are integrated with three emerging aqueous organic flow battery chemistries, and the synergetic integration of ion-selective membranes with molecular engineered organic molecules in neutral-pH electrolytes leads to significantly enhanced cycling stability. Journal Article Angewandte Chemie International Edition 61 38 Wiley 1433-7851 1521-3773 Energy Storage; Ion-Exchange Membranes; Microporous Polymers; Redox Flow Batteries; Separation Membranes 19 9 2022 2022-09-19 10.1002/anie.202207580 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University Another institution paid the OA fee HORIZON EUROPE European Research Council. Grant Numbers: 851272, 758370 Engineering and Physical Sciences Research Council. Grant Number: EP/V047078/1 Defense Threat Reduction Agency. Grant Number: HDTRA1-18-1-0054 2024-10-18T12:04:53.5195282 2024-09-25T21:32:50.6284519 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Chunchun Ye 1 Rui Tan 0009-0001-9278-7327 2 Anqi Wang 3 Jie Chen 4 Bibiana Comesaña Gándara 5 Charlotte Breakwell 6 Alberto Alvarez‐Fernandez 7 Zhiyu Fan 8 Jiaqi Weng 9 C. Grazia Bezzu 10 Stefan Guldin 11 Nigel P. Brandon 12 Anthony R. Kucernak 13 Kim E. Jelfs 14 Neil B. McKeown 0000-0002-6027-261x 15 Qilei Song 0000-0001-8570-3626 16 67808__32628__f69d31a3ab5e463699ed66d4b3d38eb9.pdf 67808.VoR.pdf 2024-10-18T11:05:56.3753513 Output 15072474 application/pdf Version of Record true © 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License. true eng http://creativecommons.org/licenses/by/4.0/
title Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes
spellingShingle Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes
Rui Tan
title_short Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes
title_full Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes
title_fullStr Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes
title_full_unstemmed Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes
title_sort Long‐Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes
author_id_str_mv 774c33a0a76a9152ca86a156b5ae26ff
author_id_fullname_str_mv 774c33a0a76a9152ca86a156b5ae26ff_***_Rui Tan
author Rui Tan
author2 Chunchun Ye
Rui Tan
Anqi Wang
Jie Chen
Bibiana Comesaña Gándara
Charlotte Breakwell
Alberto Alvarez‐Fernandez
Zhiyu Fan
Jiaqi Weng
C. Grazia Bezzu
Stefan Guldin
Nigel P. Brandon
Anthony R. Kucernak
Kim E. Jelfs
Neil B. McKeown
Qilei Song
format Journal article
container_title Angewandte Chemie International Edition
container_volume 61
container_issue 38
publishDate 2022
institution Swansea University
issn 1433-7851
1521-3773
doi_str_mv 10.1002/anie.202207580
publisher Wiley
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering
document_store_str 1
active_str 0
description Redox flow batteries (RFBs) based on aqueous organic electrolytes are a promising technology for safe and cost-effective large-scale electrical energy storage. Membrane separators are a key component in RFBs, allowing fast conduction of charge-carrier ions but minimizing the cross-over of redox-active species. Here, we report the molecular engineering of amidoxime-functionalized Polymers of Intrinsic Microporosity (AO-PIMs) by tuning their polymer chain topology and pore architecture to optimize membrane ion transport functions. AO-PIM membranes are integrated with three emerging aqueous organic flow battery chemistries, and the synergetic integration of ion-selective membranes with molecular engineered organic molecules in neutral-pH electrolytes leads to significantly enhanced cycling stability.
published_date 2022-09-19T12:04:52Z
_version_ 1813249515540447232
score 11.033506