Journal article 84 views 3 downloads
Adiabatic expansion cooling of antihydrogen
Physical Review Research, Volume: 6, Issue: 3
Swansea University Authors: Christopher Baker , Michael Charlton, Stefan Eriksson , Aled Isaac , Niels Madsen , Daniel Maxwell , Dirk van der Werf
-
PDF | Version of Record
Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license.
Download (1.05MB)
DOI (Published version): 10.1103/physrevresearch.6.l032065
Abstract
Magnetically trapped antihydrogen atoms can be cooled by expanding the volume of the trap in which they are confined. We report a proof-of-principle experiment in which antiatoms are deliberately released from expanded and static traps. Antiatoms escape at an average trap depth of 0.08 ± 0.01 K (sta...
Published in: | Physical Review Research |
---|---|
ISSN: | 2643-1564 |
Published: |
American Physical Society (APS)
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa67727 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2024-09-19T07:13:49Z |
---|---|
last_indexed |
2024-09-19T07:13:49Z |
id |
cronfa67727 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>67727</id><entry>2024-09-19</entry><title>Adiabatic expansion cooling of antihydrogen</title><swanseaauthors><author><sid>0c72afb63bd0c6089fc5b60bd096103e</sid><ORCID>0000-0002-9448-8419</ORCID><firstname>Christopher</firstname><surname>Baker</surname><name>Christopher Baker</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>d9099cdd0f182eb9a1c8fc36ed94f53f</sid><firstname>Michael</firstname><surname>Charlton</surname><name>Michael Charlton</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>785cbd474febb1bfa9c0e14abaf9c4a8</sid><ORCID>0000-0002-5390-1879</ORCID><firstname>Stefan</firstname><surname>Eriksson</surname><name>Stefan Eriksson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>06d7ed42719ef7bb697cf780c63e26f0</sid><ORCID>0000-0002-7813-1903</ORCID><firstname>Aled</firstname><surname>Isaac</surname><name>Aled Isaac</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e348e4d768ee19c1d0c68ce3a66d6303</sid><ORCID>0000-0002-7372-0784</ORCID><firstname>Niels</firstname><surname>Madsen</surname><name>Niels Madsen</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e8ebdf12e608884a8d4ea4af35b89b46</sid><ORCID>0000-0001-5178-9492</ORCID><firstname>Daniel</firstname><surname>Maxwell</surname><name>Daniel Maxwell</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4a4149ebce588e432f310f4ab44dd82a</sid><ORCID>0000-0001-5436-5214</ORCID><firstname>Dirk</firstname><surname>van der Werf</surname><name>Dirk van der Werf</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-09-19</date><deptcode>EAAS</deptcode><abstract>Magnetically trapped antihydrogen atoms can be cooled by expanding the volume of the trap in which they are confined. We report a proof-of-principle experiment in which antiatoms are deliberately released from expanded and static traps. Antiatoms escape at an average trap depth of 0.08 ± 0.01 K (statistical errors only) from the expanded trap while they escape at average depths of 0.22 ± 0.01 and 0.17 ± 0.01 K from two different static traps. (We employ temperature-equivalent energy units.) Detailed simulations qualitatively agree with the escape times measured in the experiment and show a decrease of 38% (statistical error < 0.2%) in the mean energy of the population after the trap expansion without significantly increasing antiatom loss compared to typical static confinement protocols. This change is bracketed by the predictions of one-dimensional and three-dimensional semianalytic adiabatic expansion models. These experimental, simulational, and model results are consistent with obtaining an adiabatically cooled population of antihydrogen atoms that partially exchanged energy between axial and transverse degrees of freedom during the trap expansion. This result is important for future antihydrogen gravitational experiments which rely on adiabatic cooling, and it will enable antihydrogen cooling beyond the fundamental limits of laser cooling.</abstract><type>Journal Article</type><journal>Physical Review Research</journal><volume>6</volume><journalNumber>3</journalNumber><paginationStart/><paginationEnd/><publisher>American Physical Society (APS)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2643-1564</issnElectronic><keywords>Antihydrogen, Adiabatic Cooling, Exotic Atoms, Neutral atom trapping, Magnetic traps</keywords><publishedDay>16</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-09-16</publishedDate><doi>10.1103/physrevresearch.6.l032065</doi><url/><notes>Letter</notes><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>EPSRC, Leverhulme Trust, The Royal Society</funders><projectreference/><lastEdited>2024-10-23T14:42:22.9639985</lastEdited><Created>2024-09-19T08:05:27.5323860</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>M.</firstname><surname>Ahmadi</surname><order>1</order></author><author><firstname>B. X. R.</firstname><surname>Alves</surname><order>2</order></author><author><firstname>Christopher</firstname><surname>Baker</surname><orcid>0000-0002-9448-8419</orcid><order>3</order></author><author><firstname>W.</firstname><surname>Bertsche</surname><orcid>0000-0002-6565-9282</orcid><order>4</order></author><author><firstname>A.</firstname><surname>Capra</surname><orcid>0000-0001-9499-0380</orcid><order>5</order></author><author><firstname>S.</firstname><surname>Cohen</surname><order>6</order></author><author><firstname>C.</firstname><surname>Torkzaban</surname><order>7</order></author><author><firstname>C. L.</firstname><surname>Cesar</surname><orcid>0000-0003-2638-0032</orcid><order>8</order></author><author><firstname>Michael</firstname><surname>Charlton</surname><order>9</order></author><author><firstname>R.</firstname><surname>Collister</surname><order>10</order></author><author><firstname>Stefan</firstname><surname>Eriksson</surname><orcid>0000-0002-5390-1879</orcid><order>11</order></author><author><firstname>A.</firstname><surname>Evans</surname><order>12</order></author><author><firstname>N.</firstname><surname>Evetts</surname><order>13</order></author><author><firstname>J.</firstname><surname>Fajans</surname><orcid>0000-0002-4403-6027</orcid><order>14</order></author><author><firstname>T.</firstname><surname>Friesen</surname><order>15</order></author><author><firstname>M. C.</firstname><surname>Fujiwara</surname><order>16</order></author><author><firstname>P.</firstname><surname>Granum</surname><orcid>0000-0002-2710-266x</orcid><order>17</order></author><author><firstname>J. S.</firstname><surname>Hangst</surname><order>18</order></author><author><firstname>M. E.</firstname><surname>Hayden</surname><order>19</order></author><author><firstname>D.</firstname><surname>Hodgkinson</surname><orcid>0000-0003-3410-5540</orcid><order>20</order></author><author><firstname>Aled</firstname><surname>Isaac</surname><orcid>0000-0002-7813-1903</orcid><order>21</order></author><author><firstname>M. A.</firstname><surname>Johnson</surname><orcid>0000-0002-0654-2658</orcid><order>22</order></author><author><firstname>S. A.</firstname><surname>Jones</surname><orcid>0000-0001-8205-2186</orcid><order>23</order></author><author><firstname>S.</firstname><surname>Jonsell</surname><orcid>0000-0003-4969-1714</orcid><order>24</order></author><author><firstname>N.</firstname><surname>Kalem</surname><orcid>0009-0007-7893-7310</orcid><order>25</order></author><author><firstname>Niels</firstname><surname>Madsen</surname><orcid>0000-0002-7372-0784</orcid><order>26</order></author><author><firstname>Daniel</firstname><surname>Maxwell</surname><orcid>0000-0001-5178-9492</orcid><order>27</order></author><author><firstname>J. T. K.</firstname><surname>McKenna</surname><orcid>0000-0002-7838-4230</orcid><order>28</order></author><author><firstname>S.</firstname><surname>Menary</surname><order>29</order></author><author><firstname>T.</firstname><surname>Momose</surname><orcid>0000-0001-8976-1938</orcid><order>30</order></author><author><firstname>J.</firstname><surname>Munich</surname><order>31</order></author><author><firstname>K.</firstname><surname>Olchanski</surname><order>32</order></author><author><firstname>A.</firstname><surname>Olin</surname><orcid>0000-0001-8055-7180</orcid><order>33</order></author><author><firstname>P.</firstname><surname>Pusa</surname><order>34</order></author><author><firstname>C. Ø.</firstname><surname>Rasmussen</surname><order>35</order></author><author><firstname>F.</firstname><surname>Robicheaux</surname><orcid>0000-0002-8054-6040</orcid><order>36</order></author><author><firstname>R. L.</firstname><surname>Sacramento</surname><order>37</order></author><author><firstname>M.</firstname><surname>Sameed</surname><orcid>0000-0002-9706-8970</orcid><order>38</order></author><author><firstname>E.</firstname><surname>Sarid</surname><order>39</order></author><author><firstname>D. M.</firstname><surname>Silveira</surname><order>40</order></author><author><firstname>C.</firstname><surname>So</surname><order>41</order></author><author><firstname>G.</firstname><surname>Stutter</surname><order>42</order></author><author><firstname>T. D.</firstname><surname>Tharp</surname><order>43</order></author><author><firstname>R. I.</firstname><surname>Thompson</surname><order>44</order></author><author><firstname>Dirk</firstname><surname>van der Werf</surname><orcid>0000-0001-5436-5214</orcid><order>45</order></author><author><firstname>J. S.</firstname><surname>Wurtele</surname><order>46</order></author><author><firstname>(The ALPHA</firstname><surname>Collaboration)</surname><order>47</order></author></authors><documents><document><filename>67727__32683__7fa0c0002e7840e289d1b15bc734c41b.pdf</filename><originalFilename>67727.VoR.pdf</originalFilename><uploaded>2024-10-23T14:40:22.7456492</uploaded><type>Output</type><contentLength>1102283</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs><OutputDur><Id>275</Id><IsDataAvailableOnline xsi:nil="true"/><DataNotAvailableOnlineReasonId xsi:nil="true"/><IsDurRestrictions xsi:nil="true"/><DurRestrictionReasonId xsi:nil="true"/><DurEmbargoDate xsi:nil="true"/></OutputDur></OutputDurs></rfc1807> |
spelling |
v2 67727 2024-09-19 Adiabatic expansion cooling of antihydrogen 0c72afb63bd0c6089fc5b60bd096103e 0000-0002-9448-8419 Christopher Baker Christopher Baker true false d9099cdd0f182eb9a1c8fc36ed94f53f Michael Charlton Michael Charlton true false 785cbd474febb1bfa9c0e14abaf9c4a8 0000-0002-5390-1879 Stefan Eriksson Stefan Eriksson true false 06d7ed42719ef7bb697cf780c63e26f0 0000-0002-7813-1903 Aled Isaac Aled Isaac true false e348e4d768ee19c1d0c68ce3a66d6303 0000-0002-7372-0784 Niels Madsen Niels Madsen true false e8ebdf12e608884a8d4ea4af35b89b46 0000-0001-5178-9492 Daniel Maxwell Daniel Maxwell true false 4a4149ebce588e432f310f4ab44dd82a 0000-0001-5436-5214 Dirk van der Werf Dirk van der Werf true false 2024-09-19 EAAS Magnetically trapped antihydrogen atoms can be cooled by expanding the volume of the trap in which they are confined. We report a proof-of-principle experiment in which antiatoms are deliberately released from expanded and static traps. Antiatoms escape at an average trap depth of 0.08 ± 0.01 K (statistical errors only) from the expanded trap while they escape at average depths of 0.22 ± 0.01 and 0.17 ± 0.01 K from two different static traps. (We employ temperature-equivalent energy units.) Detailed simulations qualitatively agree with the escape times measured in the experiment and show a decrease of 38% (statistical error < 0.2%) in the mean energy of the population after the trap expansion without significantly increasing antiatom loss compared to typical static confinement protocols. This change is bracketed by the predictions of one-dimensional and three-dimensional semianalytic adiabatic expansion models. These experimental, simulational, and model results are consistent with obtaining an adiabatically cooled population of antihydrogen atoms that partially exchanged energy between axial and transverse degrees of freedom during the trap expansion. This result is important for future antihydrogen gravitational experiments which rely on adiabatic cooling, and it will enable antihydrogen cooling beyond the fundamental limits of laser cooling. Journal Article Physical Review Research 6 3 American Physical Society (APS) 2643-1564 Antihydrogen, Adiabatic Cooling, Exotic Atoms, Neutral atom trapping, Magnetic traps 16 9 2024 2024-09-16 10.1103/physrevresearch.6.l032065 Letter COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University Another institution paid the OA fee EPSRC, Leverhulme Trust, The Royal Society 2024-10-23T14:42:22.9639985 2024-09-19T08:05:27.5323860 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics M. Ahmadi 1 B. X. R. Alves 2 Christopher Baker 0000-0002-9448-8419 3 W. Bertsche 0000-0002-6565-9282 4 A. Capra 0000-0001-9499-0380 5 S. Cohen 6 C. Torkzaban 7 C. L. Cesar 0000-0003-2638-0032 8 Michael Charlton 9 R. Collister 10 Stefan Eriksson 0000-0002-5390-1879 11 A. Evans 12 N. Evetts 13 J. Fajans 0000-0002-4403-6027 14 T. Friesen 15 M. C. Fujiwara 16 P. Granum 0000-0002-2710-266x 17 J. S. Hangst 18 M. E. Hayden 19 D. Hodgkinson 0000-0003-3410-5540 20 Aled Isaac 0000-0002-7813-1903 21 M. A. Johnson 0000-0002-0654-2658 22 S. A. Jones 0000-0001-8205-2186 23 S. Jonsell 0000-0003-4969-1714 24 N. Kalem 0009-0007-7893-7310 25 Niels Madsen 0000-0002-7372-0784 26 Daniel Maxwell 0000-0001-5178-9492 27 J. T. K. McKenna 0000-0002-7838-4230 28 S. Menary 29 T. Momose 0000-0001-8976-1938 30 J. Munich 31 K. Olchanski 32 A. Olin 0000-0001-8055-7180 33 P. Pusa 34 C. Ø. Rasmussen 35 F. Robicheaux 0000-0002-8054-6040 36 R. L. Sacramento 37 M. Sameed 0000-0002-9706-8970 38 E. Sarid 39 D. M. Silveira 40 C. So 41 G. Stutter 42 T. D. Tharp 43 R. I. Thompson 44 Dirk van der Werf 0000-0001-5436-5214 45 J. S. Wurtele 46 (The ALPHA Collaboration) 47 67727__32683__7fa0c0002e7840e289d1b15bc734c41b.pdf 67727.VoR.pdf 2024-10-23T14:40:22.7456492 Output 1102283 application/pdf Version of Record true Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. true eng https://creativecommons.org/licenses/by/4.0/ 275 |
title |
Adiabatic expansion cooling of antihydrogen |
spellingShingle |
Adiabatic expansion cooling of antihydrogen Christopher Baker Michael Charlton Stefan Eriksson Aled Isaac Niels Madsen Daniel Maxwell Dirk van der Werf |
title_short |
Adiabatic expansion cooling of antihydrogen |
title_full |
Adiabatic expansion cooling of antihydrogen |
title_fullStr |
Adiabatic expansion cooling of antihydrogen |
title_full_unstemmed |
Adiabatic expansion cooling of antihydrogen |
title_sort |
Adiabatic expansion cooling of antihydrogen |
author_id_str_mv |
0c72afb63bd0c6089fc5b60bd096103e d9099cdd0f182eb9a1c8fc36ed94f53f 785cbd474febb1bfa9c0e14abaf9c4a8 06d7ed42719ef7bb697cf780c63e26f0 e348e4d768ee19c1d0c68ce3a66d6303 e8ebdf12e608884a8d4ea4af35b89b46 4a4149ebce588e432f310f4ab44dd82a |
author_id_fullname_str_mv |
0c72afb63bd0c6089fc5b60bd096103e_***_Christopher Baker d9099cdd0f182eb9a1c8fc36ed94f53f_***_Michael Charlton 785cbd474febb1bfa9c0e14abaf9c4a8_***_Stefan Eriksson 06d7ed42719ef7bb697cf780c63e26f0_***_Aled Isaac e348e4d768ee19c1d0c68ce3a66d6303_***_Niels Madsen e8ebdf12e608884a8d4ea4af35b89b46_***_Daniel Maxwell 4a4149ebce588e432f310f4ab44dd82a_***_Dirk van der Werf |
author |
Christopher Baker Michael Charlton Stefan Eriksson Aled Isaac Niels Madsen Daniel Maxwell Dirk van der Werf |
author2 |
M. Ahmadi B. X. R. Alves Christopher Baker W. Bertsche A. Capra S. Cohen C. Torkzaban C. L. Cesar Michael Charlton R. Collister Stefan Eriksson A. Evans N. Evetts J. Fajans T. Friesen M. C. Fujiwara P. Granum J. S. Hangst M. E. Hayden D. Hodgkinson Aled Isaac M. A. Johnson S. A. Jones S. Jonsell N. Kalem Niels Madsen Daniel Maxwell J. T. K. McKenna S. Menary T. Momose J. Munich K. Olchanski A. Olin P. Pusa C. Ø. Rasmussen F. Robicheaux R. L. Sacramento M. Sameed E. Sarid D. M. Silveira C. So G. Stutter T. D. Tharp R. I. Thompson Dirk van der Werf J. S. Wurtele (The ALPHA Collaboration) |
format |
Journal article |
container_title |
Physical Review Research |
container_volume |
6 |
container_issue |
3 |
publishDate |
2024 |
institution |
Swansea University |
issn |
2643-1564 |
doi_str_mv |
10.1103/physrevresearch.6.l032065 |
publisher |
American Physical Society (APS) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
document_store_str |
1 |
active_str |
0 |
description |
Magnetically trapped antihydrogen atoms can be cooled by expanding the volume of the trap in which they are confined. We report a proof-of-principle experiment in which antiatoms are deliberately released from expanded and static traps. Antiatoms escape at an average trap depth of 0.08 ± 0.01 K (statistical errors only) from the expanded trap while they escape at average depths of 0.22 ± 0.01 and 0.17 ± 0.01 K from two different static traps. (We employ temperature-equivalent energy units.) Detailed simulations qualitatively agree with the escape times measured in the experiment and show a decrease of 38% (statistical error < 0.2%) in the mean energy of the population after the trap expansion without significantly increasing antiatom loss compared to typical static confinement protocols. This change is bracketed by the predictions of one-dimensional and three-dimensional semianalytic adiabatic expansion models. These experimental, simulational, and model results are consistent with obtaining an adiabatically cooled population of antihydrogen atoms that partially exchanged energy between axial and transverse degrees of freedom during the trap expansion. This result is important for future antihydrogen gravitational experiments which rely on adiabatic cooling, and it will enable antihydrogen cooling beyond the fundamental limits of laser cooling. |
published_date |
2024-09-16T14:42:21Z |
_version_ |
1813712408615583744 |
score |
11.036203 |