Journal article 166 views 16 downloads
Removing cloud shadows from ground-based solar imagery
Machine Vision and Applications, Volume: 35, Issue: 6
Swansea University Author:
Jay Paul Morgan
-
PDF | Version of Record
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License.
Download (3.56MB)
DOI (Published version): 10.1007/s00138-024-01607-2
Abstract
The study and prediction of space weather entails the analysis of solar images showing structures of the Sun’s atmosphere. When imaged from the Earth’s ground, images may be polluted by terrestrial clouds which hinder the detection of solar structures. We propose a new method to remove cloud shadows...
Published in: | Machine Vision and Applications |
---|---|
ISSN: | 0932-8092 1432-1769 |
Published: |
Springer Science and Business Media LLC
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa67663 |
first_indexed |
2024-09-17T09:13:21Z |
---|---|
last_indexed |
2024-11-25T14:20:34Z |
id |
cronfa67663 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><datestamp>2024-10-24T15:50:15.6909532</datestamp><bib-version>v2</bib-version><id>67663</id><entry>2024-09-12</entry><title>Removing cloud shadows from ground-based solar imagery</title><swanseaauthors><author><sid>df9a27bcf77b4769c2ebbb702b587491</sid><ORCID>0000-0003-3719-362X</ORCID><firstname>Jay Paul</firstname><surname>Morgan</surname><name>Jay Paul Morgan</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-09-12</date><deptcode>MACS</deptcode><abstract>The study and prediction of space weather entails the analysis of solar images showing structures of the Sun’s atmosphere. When imaged from the Earth’s ground, images may be polluted by terrestrial clouds which hinder the detection of solar structures. We propose a new method to remove cloud shadows, based on a U-Net architecture, and compare classical supervision with conditional GAN. We evaluate our method on two different imaging modalities, using both real images and a new dataset of synthetic clouds. Quantitative assessments are obtained through image quality indices (RMSE, PSNR, SSIM, and FID). We demonstrate improved results with regards to the traditional cloud removal technique and a sparse coding baseline, on different cloud types and textures.</abstract><type>Journal Article</type><journal>Machine Vision and Applications</journal><volume>35</volume><journalNumber>6</journalNumber><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0932-8092</issnPrint><issnElectronic>1432-1769</issnElectronic><keywords>Image cleaning; Solar imaging; Deep learning; U-Net; C-GAN</keywords><publishedDay>9</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-09-09</publishedDate><doi>10.1007/s00138-024-01607-2</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>Agence National de la Recherche (ANR grant No ANR-20-CE23-0014-01)</funders><projectreference/><lastEdited>2024-10-24T15:50:15.6909532</lastEdited><Created>2024-09-12T13:32:02.7306620</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Amal</firstname><surname>Chaoui</surname><order>1</order></author><author><firstname>Jay Paul</firstname><surname>Morgan</surname><orcid>0000-0003-3719-362X</orcid><order>2</order></author><author><firstname>Adeline</firstname><surname>Paiement</surname><order>3</order></author><author><firstname>Jean</firstname><surname>Aboudarham</surname><order>4</order></author></authors><documents><document><filename>67663__31448__589e0b2cdef6451fa8123dfccde4df41.pdf</filename><originalFilename>67663.VOR.pdf</originalFilename><uploaded>2024-09-24T11:57:25.7928460</uploaded><type>Output</type><contentLength>3729825</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs><OutputDur><Id>273</Id><DataControllerName>Jay Paul Morgan</DataControllerName><DataControllerOrcid>0000-0003-3719-362X</DataControllerOrcid><DataControllerEmail>j.p.morgan@swansea.ac.uk</DataControllerEmail><IsDataAvailableOnline>true</IsDataAvailableOnline><DataNotAvailableOnlineReasonId xsi:nil="true"/><DurUrl>10.5281/zenodo.8010703</DurUrl><IsDurRestrictions>false</IsDurRestrictions><DurRestrictionReasonId xsi:nil="true"/><DurEmbargoDate xsi:nil="true"/></OutputDur></OutputDurs></rfc1807> |
spelling |
2024-10-24T15:50:15.6909532 v2 67663 2024-09-12 Removing cloud shadows from ground-based solar imagery df9a27bcf77b4769c2ebbb702b587491 0000-0003-3719-362X Jay Paul Morgan Jay Paul Morgan true false 2024-09-12 MACS The study and prediction of space weather entails the analysis of solar images showing structures of the Sun’s atmosphere. When imaged from the Earth’s ground, images may be polluted by terrestrial clouds which hinder the detection of solar structures. We propose a new method to remove cloud shadows, based on a U-Net architecture, and compare classical supervision with conditional GAN. We evaluate our method on two different imaging modalities, using both real images and a new dataset of synthetic clouds. Quantitative assessments are obtained through image quality indices (RMSE, PSNR, SSIM, and FID). We demonstrate improved results with regards to the traditional cloud removal technique and a sparse coding baseline, on different cloud types and textures. Journal Article Machine Vision and Applications 35 6 Springer Science and Business Media LLC 0932-8092 1432-1769 Image cleaning; Solar imaging; Deep learning; U-Net; C-GAN 9 9 2024 2024-09-09 10.1007/s00138-024-01607-2 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University Another institution paid the OA fee Agence National de la Recherche (ANR grant No ANR-20-CE23-0014-01) 2024-10-24T15:50:15.6909532 2024-09-12T13:32:02.7306620 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Amal Chaoui 1 Jay Paul Morgan 0000-0003-3719-362X 2 Adeline Paiement 3 Jean Aboudarham 4 67663__31448__589e0b2cdef6451fa8123dfccde4df41.pdf 67663.VOR.pdf 2024-09-24T11:57:25.7928460 Output 3729825 application/pdf Version of Record true © The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License. true eng http://creativecommons.org/licenses/by/4.0/ 273 Jay Paul Morgan 0000-0003-3719-362X j.p.morgan@swansea.ac.uk true 10.5281/zenodo.8010703 false |
title |
Removing cloud shadows from ground-based solar imagery |
spellingShingle |
Removing cloud shadows from ground-based solar imagery Jay Paul Morgan |
title_short |
Removing cloud shadows from ground-based solar imagery |
title_full |
Removing cloud shadows from ground-based solar imagery |
title_fullStr |
Removing cloud shadows from ground-based solar imagery |
title_full_unstemmed |
Removing cloud shadows from ground-based solar imagery |
title_sort |
Removing cloud shadows from ground-based solar imagery |
author_id_str_mv |
df9a27bcf77b4769c2ebbb702b587491 |
author_id_fullname_str_mv |
df9a27bcf77b4769c2ebbb702b587491_***_Jay Paul Morgan |
author |
Jay Paul Morgan |
author2 |
Amal Chaoui Jay Paul Morgan Adeline Paiement Jean Aboudarham |
format |
Journal article |
container_title |
Machine Vision and Applications |
container_volume |
35 |
container_issue |
6 |
publishDate |
2024 |
institution |
Swansea University |
issn |
0932-8092 1432-1769 |
doi_str_mv |
10.1007/s00138-024-01607-2 |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
description |
The study and prediction of space weather entails the analysis of solar images showing structures of the Sun’s atmosphere. When imaged from the Earth’s ground, images may be polluted by terrestrial clouds which hinder the detection of solar structures. We propose a new method to remove cloud shadows, based on a U-Net architecture, and compare classical supervision with conditional GAN. We evaluate our method on two different imaging modalities, using both real images and a new dataset of synthetic clouds. Quantitative assessments are obtained through image quality indices (RMSE, PSNR, SSIM, and FID). We demonstrate improved results with regards to the traditional cloud removal technique and a sparse coding baseline, on different cloud types and textures. |
published_date |
2024-09-09T08:20:16Z |
_version_ |
1826828705401405440 |
score |
11.056336 |