Journal article 166 views 16 downloads

Removing cloud shadows from ground-based solar imagery

Amal Chaoui, Jay Paul Morgan Orcid Logo, Adeline Paiement, Jean Aboudarham

Machine Vision and Applications, Volume: 35, Issue: 6

Swansea University Author: Jay Paul Morgan Orcid Logo

  • 67663.VOR.pdf

    PDF | Version of Record

    © The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License.

    Download (3.56MB)

Abstract

The study and prediction of space weather entails the analysis of solar images showing structures of the Sun’s atmosphere. When imaged from the Earth’s ground, images may be polluted by terrestrial clouds which hinder the detection of solar structures. We propose a new method to remove cloud shadows...

Full description

Published in: Machine Vision and Applications
ISSN: 0932-8092 1432-1769
Published: Springer Science and Business Media LLC 2024
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa67663
first_indexed 2024-09-17T09:13:21Z
last_indexed 2024-11-25T14:20:34Z
id cronfa67663
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><datestamp>2024-10-24T15:50:15.6909532</datestamp><bib-version>v2</bib-version><id>67663</id><entry>2024-09-12</entry><title>Removing cloud shadows from ground-based solar imagery</title><swanseaauthors><author><sid>df9a27bcf77b4769c2ebbb702b587491</sid><ORCID>0000-0003-3719-362X</ORCID><firstname>Jay Paul</firstname><surname>Morgan</surname><name>Jay Paul Morgan</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-09-12</date><deptcode>MACS</deptcode><abstract>The study and prediction of space weather entails the analysis of solar images showing structures of the Sun&#x2019;s atmosphere. When imaged from the Earth&#x2019;s ground, images may be polluted by terrestrial clouds which hinder the detection of solar structures. We propose a new method to remove cloud shadows, based on a U-Net architecture, and compare classical supervision with conditional GAN. We evaluate our method on two different imaging modalities, using both real images and a new dataset of synthetic clouds. Quantitative assessments are obtained through image quality indices (RMSE, PSNR, SSIM, and FID). We demonstrate improved results with regards to the traditional cloud removal technique and a sparse coding baseline, on different cloud types and textures.</abstract><type>Journal Article</type><journal>Machine Vision and Applications</journal><volume>35</volume><journalNumber>6</journalNumber><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0932-8092</issnPrint><issnElectronic>1432-1769</issnElectronic><keywords>Image cleaning; Solar imaging; Deep learning; U-Net; C-GAN</keywords><publishedDay>9</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-09-09</publishedDate><doi>10.1007/s00138-024-01607-2</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>Agence National de la Recherche (ANR grant No ANR-20-CE23-0014-01)</funders><projectreference/><lastEdited>2024-10-24T15:50:15.6909532</lastEdited><Created>2024-09-12T13:32:02.7306620</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Amal</firstname><surname>Chaoui</surname><order>1</order></author><author><firstname>Jay Paul</firstname><surname>Morgan</surname><orcid>0000-0003-3719-362X</orcid><order>2</order></author><author><firstname>Adeline</firstname><surname>Paiement</surname><order>3</order></author><author><firstname>Jean</firstname><surname>Aboudarham</surname><order>4</order></author></authors><documents><document><filename>67663__31448__589e0b2cdef6451fa8123dfccde4df41.pdf</filename><originalFilename>67663.VOR.pdf</originalFilename><uploaded>2024-09-24T11:57:25.7928460</uploaded><type>Output</type><contentLength>3729825</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs><OutputDur><Id>273</Id><DataControllerName>Jay Paul Morgan</DataControllerName><DataControllerOrcid>0000-0003-3719-362X</DataControllerOrcid><DataControllerEmail>j.p.morgan@swansea.ac.uk</DataControllerEmail><IsDataAvailableOnline>true</IsDataAvailableOnline><DataNotAvailableOnlineReasonId xsi:nil="true"/><DurUrl>10.5281/zenodo.8010703</DurUrl><IsDurRestrictions>false</IsDurRestrictions><DurRestrictionReasonId xsi:nil="true"/><DurEmbargoDate xsi:nil="true"/></OutputDur></OutputDurs></rfc1807>
spelling 2024-10-24T15:50:15.6909532 v2 67663 2024-09-12 Removing cloud shadows from ground-based solar imagery df9a27bcf77b4769c2ebbb702b587491 0000-0003-3719-362X Jay Paul Morgan Jay Paul Morgan true false 2024-09-12 MACS The study and prediction of space weather entails the analysis of solar images showing structures of the Sun’s atmosphere. When imaged from the Earth’s ground, images may be polluted by terrestrial clouds which hinder the detection of solar structures. We propose a new method to remove cloud shadows, based on a U-Net architecture, and compare classical supervision with conditional GAN. We evaluate our method on two different imaging modalities, using both real images and a new dataset of synthetic clouds. Quantitative assessments are obtained through image quality indices (RMSE, PSNR, SSIM, and FID). We demonstrate improved results with regards to the traditional cloud removal technique and a sparse coding baseline, on different cloud types and textures. Journal Article Machine Vision and Applications 35 6 Springer Science and Business Media LLC 0932-8092 1432-1769 Image cleaning; Solar imaging; Deep learning; U-Net; C-GAN 9 9 2024 2024-09-09 10.1007/s00138-024-01607-2 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University Another institution paid the OA fee Agence National de la Recherche (ANR grant No ANR-20-CE23-0014-01) 2024-10-24T15:50:15.6909532 2024-09-12T13:32:02.7306620 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Amal Chaoui 1 Jay Paul Morgan 0000-0003-3719-362X 2 Adeline Paiement 3 Jean Aboudarham 4 67663__31448__589e0b2cdef6451fa8123dfccde4df41.pdf 67663.VOR.pdf 2024-09-24T11:57:25.7928460 Output 3729825 application/pdf Version of Record true © The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License. true eng http://creativecommons.org/licenses/by/4.0/ 273 Jay Paul Morgan 0000-0003-3719-362X j.p.morgan@swansea.ac.uk true 10.5281/zenodo.8010703 false
title Removing cloud shadows from ground-based solar imagery
spellingShingle Removing cloud shadows from ground-based solar imagery
Jay Paul Morgan
title_short Removing cloud shadows from ground-based solar imagery
title_full Removing cloud shadows from ground-based solar imagery
title_fullStr Removing cloud shadows from ground-based solar imagery
title_full_unstemmed Removing cloud shadows from ground-based solar imagery
title_sort Removing cloud shadows from ground-based solar imagery
author_id_str_mv df9a27bcf77b4769c2ebbb702b587491
author_id_fullname_str_mv df9a27bcf77b4769c2ebbb702b587491_***_Jay Paul Morgan
author Jay Paul Morgan
author2 Amal Chaoui
Jay Paul Morgan
Adeline Paiement
Jean Aboudarham
format Journal article
container_title Machine Vision and Applications
container_volume 35
container_issue 6
publishDate 2024
institution Swansea University
issn 0932-8092
1432-1769
doi_str_mv 10.1007/s00138-024-01607-2
publisher Springer Science and Business Media LLC
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 1
active_str 0
description The study and prediction of space weather entails the analysis of solar images showing structures of the Sun’s atmosphere. When imaged from the Earth’s ground, images may be polluted by terrestrial clouds which hinder the detection of solar structures. We propose a new method to remove cloud shadows, based on a U-Net architecture, and compare classical supervision with conditional GAN. We evaluate our method on two different imaging modalities, using both real images and a new dataset of synthetic clouds. Quantitative assessments are obtained through image quality indices (RMSE, PSNR, SSIM, and FID). We demonstrate improved results with regards to the traditional cloud removal technique and a sparse coding baseline, on different cloud types and textures.
published_date 2024-09-09T08:20:16Z
_version_ 1826828705401405440
score 11.056336