Journal article 590 views
Adversarial malware sample generation method based on the prototype of deep learning detector
Computers & Security, Volume: 119, Start page: 102762
Swansea University Author:
Yang Liu
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1016/j.cose.2022.102762
Abstract
Adversarial malware sample generation method based on the prototype of deep learning detector
| Published in: | Computers & Security |
|---|---|
| ISSN: | 0167-4048 |
| Published: |
Elsevier BV
2022
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa67396 |
| first_indexed |
2024-09-20T12:53:19Z |
|---|---|
| last_indexed |
2024-11-25T14:20:06Z |
| id |
cronfa67396 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-09-20T13:53:20.7767401</datestamp><bib-version>v2</bib-version><id>67396</id><entry>2024-08-15</entry><title>Adversarial malware sample generation method based on the prototype of deep learning detector</title><swanseaauthors><author><sid>ba37dab58c9093dc63c79001565b75d4</sid><ORCID>0000-0003-2486-5765</ORCID><firstname>Yang</firstname><surname>Liu</surname><name>Yang Liu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-08-15</date><deptcode>MACS</deptcode><abstract/><type>Journal Article</type><journal>Computers &amp; Security</journal><volume>119</volume><journalNumber/><paginationStart>102762</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0167-4048</issnPrint><issnElectronic/><keywords>Adversarial example; Deep learning; Model interpretability; Malware detection; Prototype</keywords><publishedDay>1</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-08-01</publishedDate><doi>10.1016/j.cose.2022.102762</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This work is supported by the Major Key Project of PCL (No. PCL2021A02), the Key-Area Research and Development Program of Guangdong Province (No. 2020B0101360001), and the National Natural Science Foundation of China (No. 62102202).</funders><projectreference/><lastEdited>2024-09-20T13:53:20.7767401</lastEdited><Created>2024-08-15T17:04:19.1594040</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Yanchen</firstname><surname>Qiao</surname><orcid>0000-0002-5009-3095</orcid><order>1</order></author><author><firstname>Weizhe</firstname><surname>Zhang</surname><order>2</order></author><author><firstname>Zhicheng</firstname><surname>Tian</surname><order>3</order></author><author><firstname>Laurence T.</firstname><surname>Yang</surname><order>4</order></author><author><firstname>Yang</firstname><surname>Liu</surname><orcid>0000-0003-2486-5765</orcid><order>5</order></author><author><firstname>Mamoun</firstname><surname>Alazab</surname><order>6</order></author></authors><documents/><OutputDurs/></rfc1807> |
| spelling |
2024-09-20T13:53:20.7767401 v2 67396 2024-08-15 Adversarial malware sample generation method based on the prototype of deep learning detector ba37dab58c9093dc63c79001565b75d4 0000-0003-2486-5765 Yang Liu Yang Liu true false 2024-08-15 MACS Journal Article Computers & Security 119 102762 Elsevier BV 0167-4048 Adversarial example; Deep learning; Model interpretability; Malware detection; Prototype 1 8 2022 2022-08-01 10.1016/j.cose.2022.102762 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University This work is supported by the Major Key Project of PCL (No. PCL2021A02), the Key-Area Research and Development Program of Guangdong Province (No. 2020B0101360001), and the National Natural Science Foundation of China (No. 62102202). 2024-09-20T13:53:20.7767401 2024-08-15T17:04:19.1594040 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Yanchen Qiao 0000-0002-5009-3095 1 Weizhe Zhang 2 Zhicheng Tian 3 Laurence T. Yang 4 Yang Liu 0000-0003-2486-5765 5 Mamoun Alazab 6 |
| title |
Adversarial malware sample generation method based on the prototype of deep learning detector |
| spellingShingle |
Adversarial malware sample generation method based on the prototype of deep learning detector Yang Liu |
| title_short |
Adversarial malware sample generation method based on the prototype of deep learning detector |
| title_full |
Adversarial malware sample generation method based on the prototype of deep learning detector |
| title_fullStr |
Adversarial malware sample generation method based on the prototype of deep learning detector |
| title_full_unstemmed |
Adversarial malware sample generation method based on the prototype of deep learning detector |
| title_sort |
Adversarial malware sample generation method based on the prototype of deep learning detector |
| author_id_str_mv |
ba37dab58c9093dc63c79001565b75d4 |
| author_id_fullname_str_mv |
ba37dab58c9093dc63c79001565b75d4_***_Yang Liu |
| author |
Yang Liu |
| author2 |
Yanchen Qiao Weizhe Zhang Zhicheng Tian Laurence T. Yang Yang Liu Mamoun Alazab |
| format |
Journal article |
| container_title |
Computers & Security |
| container_volume |
119 |
| container_start_page |
102762 |
| publishDate |
2022 |
| institution |
Swansea University |
| issn |
0167-4048 |
| doi_str_mv |
10.1016/j.cose.2022.102762 |
| publisher |
Elsevier BV |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| document_store_str |
0 |
| active_str |
0 |
| published_date |
2022-08-01T05:22:46Z |
| _version_ |
1851097524358610944 |
| score |
11.089572 |

