Journal article 141 views 15 downloads
Twisted circle compactifcation of N = 4 SYM and its holographic dual
Journal of High Energy Physics, Volume: 2024, Issue: 8
Swansea University Authors: Prem Kumar , Ricardo Stuardo
-
PDF | Version of Record
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0).
Download (411.91KB)
DOI (Published version): 10.1007/jhep08(2024)089
Abstract
We consider a compactification of 4D {\cal N} = 4 SYM, with SU(N) gauge group, on a circle with anti-periodic boundary conditions for the fermions. We couple the theory to a constant background gauge field along the circle for an abelian subgroup of the R-symmetry which allows to preserve four super...
Published in: | Journal of High Energy Physics |
---|---|
ISSN: | 1029-8479 |
Published: |
Springer Science and Business Media LLC
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa67378 |
Abstract: |
We consider a compactification of 4D {\cal N} = 4 SYM, with SU(N) gauge group, on a circle with anti-periodic boundary conditions for the fermions. We couple the theory to a constant background gauge field along the circle for an abelian subgroup of the R-symmetry which allows to preserve four supersymmetries. The 3D effective theory exhibits gapped and ungapped phases, which we argue are holographically dual, respectively, to a supersymmetric soliton in AdS_5 × S^5, and a particular quotient of AdS_5 × S^5. The gapped phase corresponds to an IR 3D {\cal N} = 2 supersymmetric Yang-Mills-Chern-Simons theory at level N, while the ungapped phase is naturally identified with the root of a Higgs branch in the 3D theory. We discuss the extension of the twisting procedure to maximally SUSY Yang-Mills theories in different dimensions, obtaining the relevant duals for 2D and 6D, and comment on the odd dimensional cases. |
---|---|
Keywords: |
AdS-CFT Correspondence; Confinement; Gauge-Gravity Correspondence; Supersymmetric Gauge Theory |
College: |
Faculty of Science and Engineering |
Funders: |
We are grateful to Luigi Tizzano for enlightening discussions and drawing our attention to the work of [22]. We would also like to thank Andrés Anabalón, Mohammad Akhond, Adi Armoni, Nikolay Bobev, Dimitrios Chatzis, Lewis T. Cole, Jeremy Echeverria Puentes, Ali Fatemiabhari, Timothy J. Hollowood, Carlos Nunez, Marcelo Oyarzo, Neil Talwar, Daniel C. Thompson, Peter Weck and Marcel I. Yáñez Reyes for various discussions and for sharing with us their ideas and knowledge. SPK is supported by STFC Consolidated Grant No. ST/X000648/1. RS acknowledges support from STFC grant ST/W507878/1. |
Issue: |
8 |