No Cover Image

Journal article 301 views 33 downloads

3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA)

Abishek Kafle, Eric Luis, Raman Silwal, Houwen Matthew Pan Orcid Logo, Pratisthit Lal Shrestha, Anil Bastola Orcid Logo

Polymers, Volume: 13, Issue: 18, Start page: 3101

Swansea University Author: Anil Bastola Orcid Logo

  • 65744.VoR.pdf

    PDF | Version of Record

    © 2021 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

    Download (12.67MB)

Check full text

DOI (Published version): 10.3390/polym13183101

Abstract

Additive manufacturing (AM) or 3D printing is a digital manufacturing process and offers virtually limitless opportunities to develop structures/objects by tailoring material composition, processing conditions, and geometry technically at every point in an object. In this review, we present three di...

Full description

Published in: Polymers
ISSN: 2073-4360
Published: MDPI AG 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa65744
Abstract: Additive manufacturing (AM) or 3D printing is a digital manufacturing process and offers virtually limitless opportunities to develop structures/objects by tailoring material composition, processing conditions, and geometry technically at every point in an object. In this review, we present three different early adopted, however, widely used, polymer-based 3D printing processes; fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA) to create polymeric parts. The main aim of this review is to offer a comparative overview by correlating polymer material-process-properties for three different 3D printing techniques. Moreover, the advanced material-process requirements towards 4D printing via these print methods taking an example of magneto-active polymers is covered. Overall, this review highlights different aspects of these printing methods and serves as a guide to select a suitable print material and 3D print technique for the targeted polymeric material-based applications and also discusses the implementation practices towards 4D printing of polymer-based systems with a current state-of-the-art approach.
Keywords: 3D printing; 4D printing; fused deposition modelling; selective laser sintering; stereolithography; polymers
College: Faculty of Science and Engineering
Issue: 18
Start Page: 3101