No Cover Image

Conference Paper/Proceeding/Abstract 478 views 69 downloads

Cultivating Spoken Language Technologies for Unwritten Languages

Thomas Reitmaier Orcid Logo, Dani Kalarikalayil Raju Orcid Logo, Ondrej Klejch Orcid Logo, Electra Wallington Orcid Logo, Nina Markl Orcid Logo, Jen Pearson Orcid Logo, Matt Jones Orcid Logo, Peter Bell Orcid Logo, Simon Robinson Orcid Logo

Proceedings of the CHI Conference on Human Factors in Computing Systems

Swansea University Authors: Thomas Reitmaier Orcid Logo, Jen Pearson Orcid Logo, Matt Jones Orcid Logo, Simon Robinson Orcid Logo

  • 65595.VoR.pdf

    PDF | Version of Record

    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Download (2.06MB)

DOI (Published version): 10.1145/3613904.3642026

Abstract

We report on community-centered, collaborative research that weaves together HCI, natural language processing, linguistic, and design insights to develop spoken language technologies for unwritten languages. Across three visits to a Banjara farming community in India, we use participatory, technical...

Full description

Published in: Proceedings of the CHI Conference on Human Factors in Computing Systems
ISBN: 979-8-4007-0330-0
Published: New York, NY, USA ACM 2024
URI: https://cronfa.swan.ac.uk/Record/cronfa65595
first_indexed 2024-03-14T11:19:18Z
last_indexed 2024-11-25T14:16:25Z
id cronfa65595
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2024-07-11T14:41:10.4215649</datestamp><bib-version>v2</bib-version><id>65595</id><entry>2024-02-08</entry><title>Cultivating Spoken Language Technologies for Unwritten Languages</title><swanseaauthors><author><sid>ccd66b64d11d76b9cd8b28e9d42a0ff0</sid><ORCID>0000-0003-2078-6699</ORCID><firstname>Thomas</firstname><surname>Reitmaier</surname><name>Thomas Reitmaier</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>6d662d9e2151b302ed384b243e2a802f</sid><ORCID>0000-0002-1960-1012</ORCID><firstname>Jen</firstname><surname>Pearson</surname><name>Jen Pearson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>10b46d7843c2ba53d116ca2ed9abb56e</sid><ORCID>0000-0001-7657-7373</ORCID><firstname>Matt</firstname><surname>Jones</surname><name>Matt Jones</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>cb3b57a21fa4e48ec633d6ba46455e91</sid><ORCID>0000-0001-9228-006X</ORCID><firstname>Simon</firstname><surname>Robinson</surname><name>Simon Robinson</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-02-08</date><deptcode>MACS</deptcode><abstract>We report on community-centered, collaborative research that weaves together HCI, natural language processing, linguistic, and design insights to develop spoken language technologies for unwritten languages. Across three visits to a Banjara farming community in India, we use participatory, technical, and creative methods to engage community members, collect spoken language photo annotations, and develop an information retrieval (IR) system. Drawing on orality theory, we interrogate assumptions and biases of current speech interfaces and create a simple application that leverages our IR system to match fluidly spoken queries with recorded annotations and surface corresponding photos. In-situ evaluations show how our novel approach returns reliable results and inspired the co-creation of media retrieval use-cases that are more appropriate in oral contexts. The very low (&lt; 4h) spoken data requirements makes our approach adaptable to other contexts where languages are unwritten or have no digital language resources available.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Proceedings of the CHI Conference on Human Factors in Computing Systems</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher>ACM</publisher><placeOfPublication>New York, NY, USA</placeOfPublication><isbnPrint/><isbnElectronic>979-8-4007-0330-0</isbnElectronic><issnPrint/><issnElectronic/><keywords>speech/language, zero-resource information retrieval, co-creation field study</keywords><publishedDay>11</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-05-11</publishedDate><doi>10.1145/3613904.3642026</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2024-07-11T14:41:10.4215649</lastEdited><Created>2024-02-08T11:37:14.8656282</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Thomas</firstname><surname>Reitmaier</surname><orcid>0000-0003-2078-6699</orcid><order>1</order></author><author><firstname>Dani Kalarikalayil</firstname><surname>Raju</surname><orcid>0000-0003-1854-5271</orcid><order>2</order></author><author><firstname>Ondrej</firstname><surname>Klejch</surname><orcid>0000-0001-5495-967x</orcid><order>3</order></author><author><firstname>Electra</firstname><surname>Wallington</surname><orcid>0000-0003-4113-2352</orcid><order>4</order></author><author><firstname>Nina</firstname><surname>Markl</surname><orcid>0000-0001-9906-9961</orcid><order>5</order></author><author><firstname>Jen</firstname><surname>Pearson</surname><orcid>0000-0002-1960-1012</orcid><order>6</order></author><author><firstname>Matt</firstname><surname>Jones</surname><orcid>0000-0001-7657-7373</orcid><order>7</order></author><author><firstname>Peter</firstname><surname>Bell</surname><orcid>0000-0002-9597-9615</orcid><order>8</order></author><author><firstname>Simon</firstname><surname>Robinson</surname><orcid>0000-0001-9228-006X</orcid><order>9</order></author></authors><documents><document><filename>65595__30427__80d0809bb9684e59b260a8cbe19efd14.pdf</filename><originalFilename>65595.VoR.pdf</originalFilename><uploaded>2024-05-21T16:04:59.1576306</uploaded><type>Output</type><contentLength>2156446</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This work is licensed under a Creative Commons Attribution International 4.0 License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2024-07-11T14:41:10.4215649 v2 65595 2024-02-08 Cultivating Spoken Language Technologies for Unwritten Languages ccd66b64d11d76b9cd8b28e9d42a0ff0 0000-0003-2078-6699 Thomas Reitmaier Thomas Reitmaier true false 6d662d9e2151b302ed384b243e2a802f 0000-0002-1960-1012 Jen Pearson Jen Pearson true false 10b46d7843c2ba53d116ca2ed9abb56e 0000-0001-7657-7373 Matt Jones Matt Jones true false cb3b57a21fa4e48ec633d6ba46455e91 0000-0001-9228-006X Simon Robinson Simon Robinson true false 2024-02-08 MACS We report on community-centered, collaborative research that weaves together HCI, natural language processing, linguistic, and design insights to develop spoken language technologies for unwritten languages. Across three visits to a Banjara farming community in India, we use participatory, technical, and creative methods to engage community members, collect spoken language photo annotations, and develop an information retrieval (IR) system. Drawing on orality theory, we interrogate assumptions and biases of current speech interfaces and create a simple application that leverages our IR system to match fluidly spoken queries with recorded annotations and surface corresponding photos. In-situ evaluations show how our novel approach returns reliable results and inspired the co-creation of media retrieval use-cases that are more appropriate in oral contexts. The very low (< 4h) spoken data requirements makes our approach adaptable to other contexts where languages are unwritten or have no digital language resources available. Conference Paper/Proceeding/Abstract Proceedings of the CHI Conference on Human Factors in Computing Systems ACM New York, NY, USA 979-8-4007-0330-0 speech/language, zero-resource information retrieval, co-creation field study 11 5 2024 2024-05-11 10.1145/3613904.3642026 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2024-07-11T14:41:10.4215649 2024-02-08T11:37:14.8656282 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Thomas Reitmaier 0000-0003-2078-6699 1 Dani Kalarikalayil Raju 0000-0003-1854-5271 2 Ondrej Klejch 0000-0001-5495-967x 3 Electra Wallington 0000-0003-4113-2352 4 Nina Markl 0000-0001-9906-9961 5 Jen Pearson 0000-0002-1960-1012 6 Matt Jones 0000-0001-7657-7373 7 Peter Bell 0000-0002-9597-9615 8 Simon Robinson 0000-0001-9228-006X 9 65595__30427__80d0809bb9684e59b260a8cbe19efd14.pdf 65595.VoR.pdf 2024-05-21T16:04:59.1576306 Output 2156446 application/pdf Version of Record true This work is licensed under a Creative Commons Attribution International 4.0 License. true eng https://creativecommons.org/licenses/by/4.0/
title Cultivating Spoken Language Technologies for Unwritten Languages
spellingShingle Cultivating Spoken Language Technologies for Unwritten Languages
Thomas Reitmaier
Jen Pearson
Matt Jones
Simon Robinson
title_short Cultivating Spoken Language Technologies for Unwritten Languages
title_full Cultivating Spoken Language Technologies for Unwritten Languages
title_fullStr Cultivating Spoken Language Technologies for Unwritten Languages
title_full_unstemmed Cultivating Spoken Language Technologies for Unwritten Languages
title_sort Cultivating Spoken Language Technologies for Unwritten Languages
author_id_str_mv ccd66b64d11d76b9cd8b28e9d42a0ff0
6d662d9e2151b302ed384b243e2a802f
10b46d7843c2ba53d116ca2ed9abb56e
cb3b57a21fa4e48ec633d6ba46455e91
author_id_fullname_str_mv ccd66b64d11d76b9cd8b28e9d42a0ff0_***_Thomas Reitmaier
6d662d9e2151b302ed384b243e2a802f_***_Jen Pearson
10b46d7843c2ba53d116ca2ed9abb56e_***_Matt Jones
cb3b57a21fa4e48ec633d6ba46455e91_***_Simon Robinson
author Thomas Reitmaier
Jen Pearson
Matt Jones
Simon Robinson
author2 Thomas Reitmaier
Dani Kalarikalayil Raju
Ondrej Klejch
Electra Wallington
Nina Markl
Jen Pearson
Matt Jones
Peter Bell
Simon Robinson
format Conference Paper/Proceeding/Abstract
container_title Proceedings of the CHI Conference on Human Factors in Computing Systems
publishDate 2024
institution Swansea University
isbn 979-8-4007-0330-0
doi_str_mv 10.1145/3613904.3642026
publisher ACM
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 1
active_str 0
description We report on community-centered, collaborative research that weaves together HCI, natural language processing, linguistic, and design insights to develop spoken language technologies for unwritten languages. Across three visits to a Banjara farming community in India, we use participatory, technical, and creative methods to engage community members, collect spoken language photo annotations, and develop an information retrieval (IR) system. Drawing on orality theory, we interrogate assumptions and biases of current speech interfaces and create a simple application that leverages our IR system to match fluidly spoken queries with recorded annotations and surface corresponding photos. In-situ evaluations show how our novel approach returns reliable results and inspired the co-creation of media retrieval use-cases that are more appropriate in oral contexts. The very low (< 4h) spoken data requirements makes our approach adaptable to other contexts where languages are unwritten or have no digital language resources available.
published_date 2024-05-11T05:32:33Z
_version_ 1821382334902960128
score 11.04748