No Cover Image

Journal article 318 views 45 downloads

Multivariate polynomial splines on generalized oranges

Maritza Sirvent, Tatyana Sorokina, Nelly Villamizar Orcid Logo, Beihui Yuan

Journal of Approximation Theory, Volume: 299, Start page: 106016

Swansea University Author: Nelly Villamizar Orcid Logo

  • 65585.VOR.pdf

    PDF | Version of Record

    © 2024 The Author(s). This is an open access article under the CC BY license.

    Download (457.05KB)

Abstract

We consider spaces of multivariate splines defined on a particular type of simplicial partitions that we call (generalized) oranges. Such partitions are composed of a finite number of maximal faces with exactly one shared medial face. We reduce the problem of finding the dimension of splines on oran...

Full description

Published in: Journal of Approximation Theory
ISSN: 0021-9045
Published: Elsevier BV 2024
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa65585
first_indexed 2024-04-04T13:29:21Z
last_indexed 2024-11-25T14:16:24Z
id cronfa65585
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2024-05-31T13:17:23.6625048</datestamp><bib-version>v2</bib-version><id>65585</id><entry>2024-02-07</entry><title>Multivariate polynomial splines on generalized oranges</title><swanseaauthors><author><sid>41572bcee47da6ba274ecd1828fbfef4</sid><ORCID>0000-0002-8741-7225</ORCID><firstname>Nelly</firstname><surname>Villamizar</surname><name>Nelly Villamizar</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-02-07</date><deptcode>MACS</deptcode><abstract>We consider spaces of multivariate splines defined on a particular type of simplicial partitions that we call (generalized) oranges. Such partitions are composed of a finite number of maximal faces with exactly one shared medial face. We reduce the problem of finding the dimension of splines on oranges to computing dimensions of splines on simpler, lower-dimensional partitions that we call projected oranges. We use both algebraic and Bernstein&#x2013;B&#xE9;zier tools.</abstract><type>Journal Article</type><journal>Journal of Approximation Theory</journal><volume>299</volume><journalNumber/><paginationStart>106016</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0021-9045</issnPrint><issnElectronic/><keywords>Multivariate spline functions; Dimension of spline spaces; Bernstein&#x2013;B&#xE9;zier methods; Cofactor criterion</keywords><publishedDay>1</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-05-01</publishedDate><doi>10.1016/j.jat.2024.106016</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>EPSRC New Investigator Award EP/V012835/1</funders><projectreference/><lastEdited>2024-05-31T13:17:23.6625048</lastEdited><Created>2024-02-07T14:55:37.1397906</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Maritza</firstname><surname>Sirvent</surname><order>1</order></author><author><firstname>Tatyana</firstname><surname>Sorokina</surname><order>2</order></author><author><firstname>Nelly</firstname><surname>Villamizar</surname><orcid>0000-0002-8741-7225</orcid><order>3</order></author><author><firstname>Beihui</firstname><surname>Yuan</surname><order>4</order></author></authors><documents><document><filename>65585__29922__8a9b0078247d42d3885e6344c77e1643.pdf</filename><originalFilename>65585.VOR.pdf</originalFilename><uploaded>2024-04-04T14:32:05.9628583</uploaded><type>Output</type><contentLength>468020</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; 2024 The Author(s). This is an open access article under the CC BY license.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2024-05-31T13:17:23.6625048 v2 65585 2024-02-07 Multivariate polynomial splines on generalized oranges 41572bcee47da6ba274ecd1828fbfef4 0000-0002-8741-7225 Nelly Villamizar Nelly Villamizar true false 2024-02-07 MACS We consider spaces of multivariate splines defined on a particular type of simplicial partitions that we call (generalized) oranges. Such partitions are composed of a finite number of maximal faces with exactly one shared medial face. We reduce the problem of finding the dimension of splines on oranges to computing dimensions of splines on simpler, lower-dimensional partitions that we call projected oranges. We use both algebraic and Bernstein–Bézier tools. Journal Article Journal of Approximation Theory 299 106016 Elsevier BV 0021-9045 Multivariate spline functions; Dimension of spline spaces; Bernstein–Bézier methods; Cofactor criterion 1 5 2024 2024-05-01 10.1016/j.jat.2024.106016 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University SU Library paid the OA fee (TA Institutional Deal) EPSRC New Investigator Award EP/V012835/1 2024-05-31T13:17:23.6625048 2024-02-07T14:55:37.1397906 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Maritza Sirvent 1 Tatyana Sorokina 2 Nelly Villamizar 0000-0002-8741-7225 3 Beihui Yuan 4 65585__29922__8a9b0078247d42d3885e6344c77e1643.pdf 65585.VOR.pdf 2024-04-04T14:32:05.9628583 Output 468020 application/pdf Version of Record true © 2024 The Author(s). This is an open access article under the CC BY license. true eng http://creativecommons.org/licenses/by/4.0/
title Multivariate polynomial splines on generalized oranges
spellingShingle Multivariate polynomial splines on generalized oranges
Nelly Villamizar
title_short Multivariate polynomial splines on generalized oranges
title_full Multivariate polynomial splines on generalized oranges
title_fullStr Multivariate polynomial splines on generalized oranges
title_full_unstemmed Multivariate polynomial splines on generalized oranges
title_sort Multivariate polynomial splines on generalized oranges
author_id_str_mv 41572bcee47da6ba274ecd1828fbfef4
author_id_fullname_str_mv 41572bcee47da6ba274ecd1828fbfef4_***_Nelly Villamizar
author Nelly Villamizar
author2 Maritza Sirvent
Tatyana Sorokina
Nelly Villamizar
Beihui Yuan
format Journal article
container_title Journal of Approximation Theory
container_volume 299
container_start_page 106016
publishDate 2024
institution Swansea University
issn 0021-9045
doi_str_mv 10.1016/j.jat.2024.106016
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 1
active_str 0
description We consider spaces of multivariate splines defined on a particular type of simplicial partitions that we call (generalized) oranges. Such partitions are composed of a finite number of maximal faces with exactly one shared medial face. We reduce the problem of finding the dimension of splines on oranges to computing dimensions of splines on simpler, lower-dimensional partitions that we call projected oranges. We use both algebraic and Bernstein–Bézier tools.
published_date 2024-05-01T20:28:19Z
_version_ 1821348095084986368
score 11.04748