Journal article 318 views 45 downloads
Multivariate polynomial splines on generalized oranges
Journal of Approximation Theory, Volume: 299, Start page: 106016
Swansea University Author: Nelly Villamizar
-
PDF | Version of Record
© 2024 The Author(s). This is an open access article under the CC BY license.
Download (457.05KB)
DOI (Published version): 10.1016/j.jat.2024.106016
Abstract
We consider spaces of multivariate splines defined on a particular type of simplicial partitions that we call (generalized) oranges. Such partitions are composed of a finite number of maximal faces with exactly one shared medial face. We reduce the problem of finding the dimension of splines on oran...
Published in: | Journal of Approximation Theory |
---|---|
ISSN: | 0021-9045 |
Published: |
Elsevier BV
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa65585 |
first_indexed |
2024-04-04T13:29:21Z |
---|---|
last_indexed |
2024-11-25T14:16:24Z |
id |
cronfa65585 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-05-31T13:17:23.6625048</datestamp><bib-version>v2</bib-version><id>65585</id><entry>2024-02-07</entry><title>Multivariate polynomial splines on generalized oranges</title><swanseaauthors><author><sid>41572bcee47da6ba274ecd1828fbfef4</sid><ORCID>0000-0002-8741-7225</ORCID><firstname>Nelly</firstname><surname>Villamizar</surname><name>Nelly Villamizar</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-02-07</date><deptcode>MACS</deptcode><abstract>We consider spaces of multivariate splines defined on a particular type of simplicial partitions that we call (generalized) oranges. Such partitions are composed of a finite number of maximal faces with exactly one shared medial face. We reduce the problem of finding the dimension of splines on oranges to computing dimensions of splines on simpler, lower-dimensional partitions that we call projected oranges. We use both algebraic and Bernstein–Bézier tools.</abstract><type>Journal Article</type><journal>Journal of Approximation Theory</journal><volume>299</volume><journalNumber/><paginationStart>106016</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0021-9045</issnPrint><issnElectronic/><keywords>Multivariate spline functions; Dimension of spline spaces; Bernstein–Bézier methods; Cofactor criterion</keywords><publishedDay>1</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-05-01</publishedDate><doi>10.1016/j.jat.2024.106016</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>EPSRC New Investigator Award EP/V012835/1</funders><projectreference/><lastEdited>2024-05-31T13:17:23.6625048</lastEdited><Created>2024-02-07T14:55:37.1397906</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Maritza</firstname><surname>Sirvent</surname><order>1</order></author><author><firstname>Tatyana</firstname><surname>Sorokina</surname><order>2</order></author><author><firstname>Nelly</firstname><surname>Villamizar</surname><orcid>0000-0002-8741-7225</orcid><order>3</order></author><author><firstname>Beihui</firstname><surname>Yuan</surname><order>4</order></author></authors><documents><document><filename>65585__29922__8a9b0078247d42d3885e6344c77e1643.pdf</filename><originalFilename>65585.VOR.pdf</originalFilename><uploaded>2024-04-04T14:32:05.9628583</uploaded><type>Output</type><contentLength>468020</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2024 The Author(s). This is an open access article under the CC BY license.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2024-05-31T13:17:23.6625048 v2 65585 2024-02-07 Multivariate polynomial splines on generalized oranges 41572bcee47da6ba274ecd1828fbfef4 0000-0002-8741-7225 Nelly Villamizar Nelly Villamizar true false 2024-02-07 MACS We consider spaces of multivariate splines defined on a particular type of simplicial partitions that we call (generalized) oranges. Such partitions are composed of a finite number of maximal faces with exactly one shared medial face. We reduce the problem of finding the dimension of splines on oranges to computing dimensions of splines on simpler, lower-dimensional partitions that we call projected oranges. We use both algebraic and Bernstein–Bézier tools. Journal Article Journal of Approximation Theory 299 106016 Elsevier BV 0021-9045 Multivariate spline functions; Dimension of spline spaces; Bernstein–Bézier methods; Cofactor criterion 1 5 2024 2024-05-01 10.1016/j.jat.2024.106016 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University SU Library paid the OA fee (TA Institutional Deal) EPSRC New Investigator Award EP/V012835/1 2024-05-31T13:17:23.6625048 2024-02-07T14:55:37.1397906 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Maritza Sirvent 1 Tatyana Sorokina 2 Nelly Villamizar 0000-0002-8741-7225 3 Beihui Yuan 4 65585__29922__8a9b0078247d42d3885e6344c77e1643.pdf 65585.VOR.pdf 2024-04-04T14:32:05.9628583 Output 468020 application/pdf Version of Record true © 2024 The Author(s). This is an open access article under the CC BY license. true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Multivariate polynomial splines on generalized oranges |
spellingShingle |
Multivariate polynomial splines on generalized oranges Nelly Villamizar |
title_short |
Multivariate polynomial splines on generalized oranges |
title_full |
Multivariate polynomial splines on generalized oranges |
title_fullStr |
Multivariate polynomial splines on generalized oranges |
title_full_unstemmed |
Multivariate polynomial splines on generalized oranges |
title_sort |
Multivariate polynomial splines on generalized oranges |
author_id_str_mv |
41572bcee47da6ba274ecd1828fbfef4 |
author_id_fullname_str_mv |
41572bcee47da6ba274ecd1828fbfef4_***_Nelly Villamizar |
author |
Nelly Villamizar |
author2 |
Maritza Sirvent Tatyana Sorokina Nelly Villamizar Beihui Yuan |
format |
Journal article |
container_title |
Journal of Approximation Theory |
container_volume |
299 |
container_start_page |
106016 |
publishDate |
2024 |
institution |
Swansea University |
issn |
0021-9045 |
doi_str_mv |
10.1016/j.jat.2024.106016 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
We consider spaces of multivariate splines defined on a particular type of simplicial partitions that we call (generalized) oranges. Such partitions are composed of a finite number of maximal faces with exactly one shared medial face. We reduce the problem of finding the dimension of splines on oranges to computing dimensions of splines on simpler, lower-dimensional partitions that we call projected oranges. We use both algebraic and Bernstein–Bézier tools. |
published_date |
2024-05-01T20:28:19Z |
_version_ |
1821348095084986368 |
score |
11.04748 |