Journal article 288 views
A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations
International Journal of Computational Fluid Dynamics
Swansea University Authors: Oubay Hassan , Rubén Sevilla
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1080/10618562.2024.2306941
Abstract
A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations
Published in: | International Journal of Computational Fluid Dynamics |
---|---|
Published: |
Taylor and Francis
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa65507 |
first_indexed |
2024-01-24T16:11:10Z |
---|---|
last_indexed |
2024-11-25T14:16:14Z |
id |
cronfa65507 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-11-06T12:30:08.2916906</datestamp><bib-version>v2</bib-version><id>65507</id><entry>2024-01-24</entry><title>A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations</title><swanseaauthors><author><sid>07479d73eba3773d8904cbfbacc57c5b</sid><ORCID>0000-0001-7472-3218</ORCID><firstname>Oubay</firstname><surname>Hassan</surname><name>Oubay Hassan</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b542c87f1b891262844e95a682f045b6</sid><ORCID>0000-0002-0061-6214</ORCID><firstname>Rubén</firstname><surname>Sevilla</surname><name>Rubén Sevilla</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-01-24</date><deptcode>ACEM</deptcode><abstract/><type>Journal Article</type><journal>International Journal of Computational Fluid Dynamics</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher>Taylor and Francis</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords/><publishedDay>0</publishedDay><publishedMonth>0</publishedMonth><publishedYear>0</publishedYear><publishedDate>0001-01-01</publishedDate><doi>10.1080/10618562.2024.2306941</doi><url/><notes>Preprint submitted to IJCFD</notes><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders/><projectreference/><lastEdited>2024-11-06T12:30:08.2916906</lastEdited><Created>2024-01-24T16:09:01.4872012</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Sergi</firstname><surname>Sanchez-Gamero</surname><order>1</order></author><author><firstname>Oubay</firstname><surname>Hassan</surname><orcid>0000-0001-7472-3218</orcid><order>2</order></author><author><firstname>Rubén</firstname><surname>Sevilla</surname><orcid>0000-0002-0061-6214</orcid><order>3</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2024-11-06T12:30:08.2916906 v2 65507 2024-01-24 A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations 07479d73eba3773d8904cbfbacc57c5b 0000-0001-7472-3218 Oubay Hassan Oubay Hassan true false b542c87f1b891262844e95a682f045b6 0000-0002-0061-6214 Rubén Sevilla Rubén Sevilla true false 2024-01-24 ACEM Journal Article International Journal of Computational Fluid Dynamics Taylor and Francis 0 0 0 0001-01-01 10.1080/10618562.2024.2306941 Preprint submitted to IJCFD COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University SU Library paid the OA fee (TA Institutional Deal) 2024-11-06T12:30:08.2916906 2024-01-24T16:09:01.4872012 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Sergi Sanchez-Gamero 1 Oubay Hassan 0000-0001-7472-3218 2 Rubén Sevilla 0000-0002-0061-6214 3 |
title |
A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations |
spellingShingle |
A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations Oubay Hassan Rubén Sevilla |
title_short |
A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations |
title_full |
A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations |
title_fullStr |
A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations |
title_full_unstemmed |
A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations |
title_sort |
A machine learning approach to predict near-optimal meshes for turbulent compressible flow simulations |
author_id_str_mv |
07479d73eba3773d8904cbfbacc57c5b b542c87f1b891262844e95a682f045b6 |
author_id_fullname_str_mv |
07479d73eba3773d8904cbfbacc57c5b_***_Oubay Hassan b542c87f1b891262844e95a682f045b6_***_Rubén Sevilla |
author |
Oubay Hassan Rubén Sevilla |
author2 |
Sergi Sanchez-Gamero Oubay Hassan Rubén Sevilla |
format |
Journal article |
container_title |
International Journal of Computational Fluid Dynamics |
institution |
Swansea University |
doi_str_mv |
10.1080/10618562.2024.2306941 |
publisher |
Taylor and Francis |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
document_store_str |
0 |
active_str |
0 |
published_date |
0001-01-01T02:45:43Z |
_version_ |
1821371839003230208 |
score |
11.04748 |