No Cover Image

Journal article 297 views 35 downloads

Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices

Hongjun Zeng, Mohammad Abedin, Xiangjing Zhou, Ran Lu

International Review of Financial Analysis, Volume: 92, Start page: 103073

Swansea University Author: Mohammad Abedin

  • 65445_AAM.pdf

    PDF | Accepted Manuscript

    Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).

    Download (432.86KB)
Published in: International Review of Financial Analysis
ISSN: 1057-5219
Published: Elsevier BV 2024
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa65445
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2024-01-11T21:26:35Z
last_indexed 2024-01-11T21:26:35Z
id cronfa65445
recordtype SURis
fullrecord <?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>65445</id><entry>2024-01-11</entry><title>Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices</title><swanseaauthors><author><sid>4ed8c020eae0c9bec4f5d9495d86d415</sid><firstname>Mohammad</firstname><surname>Abedin</surname><name>Mohammad Abedin</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-01-11</date><deptcode>BAF</deptcode><abstract/><type>Journal Article</type><journal>International Review of Financial Analysis</journal><volume>92</volume><journalNumber/><paginationStart>103073</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1057-5219</issnPrint><issnElectronic/><keywords>Artificial intelligence; Clean energy; Tail risk; Quantile time-frequency; Wavelet; Quantile granger causality</keywords><publishedDay>1</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-03-01</publishedDate><doi>10.1016/j.irfa.2024.103073</doi><url/><notes/><college>COLLEGE NANME</college><department>Accounting and Finance</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BAF</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2024-03-21T11:17:04.0655334</lastEdited><Created>2024-01-11T21:24:34.2131083</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">School of Management - Accounting and Finance</level></path><authors><author><firstname>Hongjun</firstname><surname>Zeng</surname><order>1</order></author><author><firstname>Mohammad</firstname><surname>Abedin</surname><order>2</order></author><author><firstname>Xiangjing</firstname><surname>Zhou</surname><order>3</order></author><author><firstname>Ran</firstname><surname>Lu</surname><order>4</order></author></authors><documents><document><filename>65445__29776__f786a5ba2929469ca4ce91556ea1a943.pdf</filename><originalFilename>65445_AAM.pdf</originalFilename><uploaded>2024-03-21T11:15:22.8432810</uploaded><type>Output</type><contentLength>443249</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/2.0/deed.en</licence></document></documents><OutputDurs/></rfc1807>
spelling v2 65445 2024-01-11 Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices 4ed8c020eae0c9bec4f5d9495d86d415 Mohammad Abedin Mohammad Abedin true false 2024-01-11 BAF Journal Article International Review of Financial Analysis 92 103073 Elsevier BV 1057-5219 Artificial intelligence; Clean energy; Tail risk; Quantile time-frequency; Wavelet; Quantile granger causality 1 3 2024 2024-03-01 10.1016/j.irfa.2024.103073 COLLEGE NANME Accounting and Finance COLLEGE CODE BAF Swansea University 2024-03-21T11:17:04.0655334 2024-01-11T21:24:34.2131083 Faculty of Humanities and Social Sciences School of Management - Accounting and Finance Hongjun Zeng 1 Mohammad Abedin 2 Xiangjing Zhou 3 Ran Lu 4 65445__29776__f786a5ba2929469ca4ce91556ea1a943.pdf 65445_AAM.pdf 2024-03-21T11:15:22.8432810 Output 443249 application/pdf Accepted Manuscript true Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention). true eng https://creativecommons.org/licenses/by/2.0/deed.en
title Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices
spellingShingle Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices
Mohammad Abedin
title_short Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices
title_full Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices
title_fullStr Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices
title_full_unstemmed Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices
title_sort Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices
author_id_str_mv 4ed8c020eae0c9bec4f5d9495d86d415
author_id_fullname_str_mv 4ed8c020eae0c9bec4f5d9495d86d415_***_Mohammad Abedin
author Mohammad Abedin
author2 Hongjun Zeng
Mohammad Abedin
Xiangjing Zhou
Ran Lu
format Journal article
container_title International Review of Financial Analysis
container_volume 92
container_start_page 103073
publishDate 2024
institution Swansea University
issn 1057-5219
doi_str_mv 10.1016/j.irfa.2024.103073
publisher Elsevier BV
college_str Faculty of Humanities and Social Sciences
hierarchytype
hierarchy_top_id facultyofhumanitiesandsocialsciences
hierarchy_top_title Faculty of Humanities and Social Sciences
hierarchy_parent_id facultyofhumanitiesandsocialsciences
hierarchy_parent_title Faculty of Humanities and Social Sciences
department_str School of Management - Accounting and Finance{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}School of Management - Accounting and Finance
document_store_str 1
active_str 0
published_date 2024-03-01T11:17:01Z
_version_ 1794134319958065152
score 11.037166