Journal article 297 views 35 downloads
Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices
Hongjun Zeng,
Mohammad Abedin,
Xiangjing Zhou,
Ran Lu
International Review of Financial Analysis, Volume: 92, Start page: 103073
Swansea University Author: Mohammad Abedin
-
PDF | Accepted Manuscript
Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).
Download (432.86KB)
DOI (Published version): 10.1016/j.irfa.2024.103073
Abstract
Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices
Published in: | International Review of Financial Analysis |
---|---|
ISSN: | 1057-5219 |
Published: |
Elsevier BV
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa65445 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2024-01-11T21:26:35Z |
---|---|
last_indexed |
2024-01-11T21:26:35Z |
id |
cronfa65445 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>65445</id><entry>2024-01-11</entry><title>Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices</title><swanseaauthors><author><sid>4ed8c020eae0c9bec4f5d9495d86d415</sid><firstname>Mohammad</firstname><surname>Abedin</surname><name>Mohammad Abedin</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-01-11</date><deptcode>BAF</deptcode><abstract/><type>Journal Article</type><journal>International Review of Financial Analysis</journal><volume>92</volume><journalNumber/><paginationStart>103073</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1057-5219</issnPrint><issnElectronic/><keywords>Artificial intelligence; Clean energy; Tail risk; Quantile time-frequency; Wavelet; Quantile granger causality</keywords><publishedDay>1</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-03-01</publishedDate><doi>10.1016/j.irfa.2024.103073</doi><url/><notes/><college>COLLEGE NANME</college><department>Accounting and Finance</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BAF</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2024-03-21T11:17:04.0655334</lastEdited><Created>2024-01-11T21:24:34.2131083</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">School of Management - Accounting and Finance</level></path><authors><author><firstname>Hongjun</firstname><surname>Zeng</surname><order>1</order></author><author><firstname>Mohammad</firstname><surname>Abedin</surname><order>2</order></author><author><firstname>Xiangjing</firstname><surname>Zhou</surname><order>3</order></author><author><firstname>Ran</firstname><surname>Lu</surname><order>4</order></author></authors><documents><document><filename>65445__29776__f786a5ba2929469ca4ce91556ea1a943.pdf</filename><originalFilename>65445_AAM.pdf</originalFilename><uploaded>2024-03-21T11:15:22.8432810</uploaded><type>Output</type><contentLength>443249</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/2.0/deed.en</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
v2 65445 2024-01-11 Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices 4ed8c020eae0c9bec4f5d9495d86d415 Mohammad Abedin Mohammad Abedin true false 2024-01-11 BAF Journal Article International Review of Financial Analysis 92 103073 Elsevier BV 1057-5219 Artificial intelligence; Clean energy; Tail risk; Quantile time-frequency; Wavelet; Quantile granger causality 1 3 2024 2024-03-01 10.1016/j.irfa.2024.103073 COLLEGE NANME Accounting and Finance COLLEGE CODE BAF Swansea University 2024-03-21T11:17:04.0655334 2024-01-11T21:24:34.2131083 Faculty of Humanities and Social Sciences School of Management - Accounting and Finance Hongjun Zeng 1 Mohammad Abedin 2 Xiangjing Zhou 3 Ran Lu 4 65445__29776__f786a5ba2929469ca4ce91556ea1a943.pdf 65445_AAM.pdf 2024-03-21T11:15:22.8432810 Output 443249 application/pdf Accepted Manuscript true Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention). true eng https://creativecommons.org/licenses/by/2.0/deed.en |
title |
Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices |
spellingShingle |
Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices Mohammad Abedin |
title_short |
Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices |
title_full |
Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices |
title_fullStr |
Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices |
title_full_unstemmed |
Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices |
title_sort |
Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices |
author_id_str_mv |
4ed8c020eae0c9bec4f5d9495d86d415 |
author_id_fullname_str_mv |
4ed8c020eae0c9bec4f5d9495d86d415_***_Mohammad Abedin |
author |
Mohammad Abedin |
author2 |
Hongjun Zeng Mohammad Abedin Xiangjing Zhou Ran Lu |
format |
Journal article |
container_title |
International Review of Financial Analysis |
container_volume |
92 |
container_start_page |
103073 |
publishDate |
2024 |
institution |
Swansea University |
issn |
1057-5219 |
doi_str_mv |
10.1016/j.irfa.2024.103073 |
publisher |
Elsevier BV |
college_str |
Faculty of Humanities and Social Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofhumanitiesandsocialsciences |
hierarchy_top_title |
Faculty of Humanities and Social Sciences |
hierarchy_parent_id |
facultyofhumanitiesandsocialsciences |
hierarchy_parent_title |
Faculty of Humanities and Social Sciences |
department_str |
School of Management - Accounting and Finance{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}School of Management - Accounting and Finance |
document_store_str |
1 |
active_str |
0 |
published_date |
2024-03-01T11:17:01Z |
_version_ |
1794134319958065152 |
score |
11.037166 |